
SWIFT Toolkit for Bulk Data Ingest

SWIFT () is a toolkit that allows experienced users to bulk-upload data into an eagle-i repository, via ETL (Extract, Semantic Web Ingest from Tables
Transform and Load). The figure below is a high level depiction of the ETL process. The toolkit supports Excel spreadsheets and csv files as input (though
both need to conform to a SWIFT template, see below).

This guide provides an overview of tasks pertaining to ETL and the usage of the SWIFT toolkit. The ETL workflow requires a person with domain
knowledge and understanding of the eagle-i resource ontology to prepare the input files for optimal upload, and a person with basic knowledge of Unix to
run the commands and troubleshoot potential errors. A detailed description is provided in the page Preparing Input Data and Running an ETL Process

The SWIFT toolkit is comprised of:

an - command line program that generates Excel spreadsheet templates and mapping files for the various resource types ETL Input Generator
of the eagle-i resource ontology (e.g. a template/map for antibodies, for instruments, etc.)
an - command line program that executes a bulk uploadETLer
a - command line program that deletes a previous ETL uploaddeETLer
Bulk workflow - command line program that executes workflow transitions on groups of resources, e.g. Publish, Return to curation, Withdraw

Prerequistes
Running SWIFT Toolkit commands requires:

A Unix-like environment including a terminal for executing commands
MacOS and Linux users don't need to install anything extra. For MacOS, use the Terminal app under Applications/Utilities
cygwin is recommended for Windows users

A runtime environmentJava 1.7
execute the command {{ java -- version}} to find out what version you have.
If necessary, you may and follow the .download the JRE directly from Oracle installation instructions

Download
The SWIFT toolkit is packaged as a zip file, and can be downloaded from our . software repository

Download the SWIFT toolkit distribution that , named matches the version of your eagle-i repository eagle-i-datatools-swift-[version]-
, Unzip it into a dedicated directory, and navigate to it. For example:dist.zip

mkdir ~/eagle-i
unzip -d ~/eagle-i eagle-i-datatools-swift-2.0MS3.01-dist.zip
cd ~/eagle-i/swift-2.0MS3.01

Available commands

The toolkit described herein is currently not user-friendly (though it works well – we use it routinely to bulk-upload data). If you encounter issues,
please do not hesitate to .contact us

https://open.catalyst.harvard.edu/wiki/display/eaglei/Preparing+Input+Data+and+Running+an+ETL+Process
http://www.cygwin.com/
http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
https://open.catalyst.harvard.edu/wiki/display/eaglei/Software+downloads
mailto:Juliane_Schneider@hms.harvard.edu

Input generation

To generate etl templates and maps, navigate to the dedicated directory (above) and run the script:

./generate-inputs.sh -t typeURI

You may obtain the type URI from the . Use the left bar to find the most specific type you need, select it and grab its eagle-i ontology browser
URI, e.g. for Monoclonal Antibodies.http://purl.obolibrary.org/obo/ERO_0000229

This script will create/use two directories with obvious meanings: and . Do not modify them../maps ./templates

ETL

A detailed report of the ETL results is generated in the directory; please inspect it to verify that all rows logs~/eagle-i/swift-2.0MS3.01/
were correctly uploaded. The RDF version of generated resources is also logged in this directory.
To further verify the data upload, log on to the SWEET application and select the lab to which the ETLd resources belong.

Assumptions

Templates that were generated by are completed and in a directory, e.g. .generate-inputs.sh dataDirectory

Maps () that were generated by have been copied to the SWIFT executable directory's maps folder, e.g. *.rdf generate-inputs.sh ~
./eagle-i/swift-2.0MS3.01/maps

ETL to create new resources

ETL new resources

./ETLer.sh -d dataDirectory [-p DRAFT|CURATION|PUBLISH] -c username:password -r repositoryURL

This command will not attempt to determine if matching resources exist already in the eagle-i repository; it is therefore not - if it is run idempotent
two times with the same data file, duplicate resources will be created.
The value of the (promote) parameter indicates the desired workflow state for resources - we recommend to choose CURATION, verify the -p all
resources were ETLd correctly, and then publish using the bulk workflow command (see below). If you've already ran a test ETL in a staging
environment, choose PUBLISH directly.
To avoid classpath confusion, please use the fully qualified path for the .dataDirectory
Make sure to use the full path of your directory,, eg /Users/juliane/swift-4.3.0/mcow_ipsc/test
Make sure you are in your swift directory in your terminal when you execute the command.

ETL to replace existing or create new resources.

ETL command for replacing existing resources or creating new resources

./ETLer.sh -d dataDirectory [-p DRAFT|CURATION|PUBLISH] -c username:password -r repositoryURL -eid property-uri

Use this command if the input file represents resources that have been previously uploaded or created in eagle-i
The value of the parameter (external identifier) is the URI of a property that uniquely identifies the resource outside eagle-i. This property -eid
will be used to match the input to a resource in the eagle-i repository. Grab the property URI from the (expand the eagle-i ontology browser
property name to see all information about a property). Example properties are:

Innocuous warnings are produced when generating the templates; these may safely be ignored. If you encounter errors or issues, please do not
hesitate to .contact us

The ETLer expects data to be entered into one of the generated templates, and a few conventions to be respected (see Preparing Input Data
) . A data curator usually makes sure that the template is correctly filled. In particular, the location of the resources and Running an ETL Process

to be ETLd (e.g. Lab or Core facility name) must be provided in every row of data.

All files in the dataDirectory will be processed by the ETLer. Please be sure all secondary resource templates are in their own
directories.

http://search.eagle-i.net/model
http://search.eagle-i.net/model
mailto:Daniela_Bourges@hms.harvard.edu
https://open.catalyst.harvard.edu/wiki/display/eaglei/Preparing+Input+Data+and+Running+an+ETL+Process
https://open.catalyst.harvard.edu/wiki/display/eaglei/Preparing+Input+Data+and+Running+an+ETL+Process

Catalog number, -eid http://purl.obolibrary.org/obo/ERO_0001528
Inventory number, -eid http://purl.obolibrary.org/obo/ERO_0000044
RDFS label, use the shorthand syntax -eid label

If the ETL process finds a matching resource, it will all its properties with the values from the input file; the URI of the matched resource replace
will be preserved.
If the ETL process does not find a matching resource, a new resource will be created.
The value of the (promote) parameter indicates the desired workflow state for newly created resources. Existing resources will retain their -p
workflow state.
To avoid classpath confusion, please use the fully qualified path for the .dataDirectory

Practicing ETL

If you are practicing the ETL process, you may wish to upload your data to the common eagle-i training node. For example, if your directory is named
dataDirectory and you wish to practice creating new resources, the script would be executed as follows (default workflow state is DRAFT):

 ./ETLer.sh -d dataDirectory -c L4:Level4 -r https://training.eagle-i.net

Note that the data that is uploaded to the training node CAN be viewed and modified by others even in a draft state (even if you subsequently lock the
records). Note also that the information in the training node is not persistent as the node is refreshed periodically.

De-ETL

Resources that are uploaded to an eagle-i repository via ETL are tagged with the name of the file from which they were extracted. It is therefore relatively
simple to de-ETL an entire file. To do so, execute the following command:

 ./deETLer.sh -f filename -c username:password -r repositoryURL

Bulk Workflow

Execute the following command to perform workflow actions (e.g. send to curation, publish, unpublish) on resources ETLd from a particular file (i.e. all
resources that are tagged with that filename in the eagle-i repository):

 ./bulk-workflow -f filename -p DRAFT|CURATION|PUBLISH -c username:password -r repositoryURL

Note the following limitations of bulk workflow:

All the resources tagged with the filename must be in the same state
You must choose a final state that is reachable from the resources' current state

if the resources are in draft, choose CURATION
if the resources are in curation, choose PUBLISH or DRAFT
if the resources are published, choose CURATION
if you want to publish resources that are currently in draft, you'll need to run the bulk workflow command twice

	SWIFT Toolkit for Bulk Data Ingest

