
Using third-party-signed certificate in SHRINE for browser
encryption
By default, our recommendation for a typical ACT remote site is to have it submit a Certificate Signing Request (CSR) to the certificate authority (CA) of the
ACT tier to which they are joining. The CA will in turn generate a new certificate for the downstream site, and we will return that certificate, the hub
certificate, and the CA certificate of the tier back to the downstream site. The site will then import the certificates into their shrine keystore file, and
configure their and to point to the alias entry in the keystore that corresponds to the site.shrine.conf server.xml

A typical keystore after importing all the certs in would look like this (assuming that the downstream site is called " "):shrine.example.edu

Keystore type: jks
Keystore provider: SUN

Your keystore contains 3 entries

shrine.example.edu, Oct 31, 2018, PrivateKeyEntry,
Certificate fingerprint (SHA1): 26:0B:FE:98:21:BA:C8:5A:A5:F5:35:79:8E:81:1A:E9:F4:3B:FF:56

shrine-act-test-ca, Jul 31, 2019, trustedCertEntry,
Certificate fingerprint (SHA1): 13:4D:B5:5C:E3:48:A0:7B:9B:20:22:8B:0B:C1:BE:DD:B9:E4:1B:AD

shrine-act-test.hms.harvard.edu, Jul 31, 2019, trustedCertEntry,
Certificate fingerprint (SHA1): 52:82:A0:6D:D1:48:B2:EA:BB:2C:58:BD:E5:C7:3B:21:75:2B:46:F6

Their would contain a block like this:shrine.conf

keystore {
 file = "/opt/shrine/shrine.keystore"
 password = "xxxxxx"
 privateKeyAlias = "shrine.example.edu"
 keyStoreType = "JKS"
 caCertAliases = ["shrine-act-test-ca"]
 }

And their would contain a block like this:server.xml

<Connector port="6443" protocol="org.apache.coyote.http11.Http11NioProtocol"
 maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"
 keystoreFile="/opt/shrine/shrine.keystore"
 keystorePass="xxxxxx"
 keyAlias="shrine.example.edu"/>

One drawback when using the above approach is that a web browser attempting to access a shrine host configured in this way will generate a
warning. The reason for the warning is that, by default, the browser does not trust the ACT CA, because none of the ACT CAs are public. Consequently,
any certificate that the CA signs is not trusted by the browser. While the browser can be configured to ignore the warning and the CA can be manually
imported into the browser's trust store, some downstream sites may opt for a more elegant approach. The option of using a third-party-signed certificate
provides a more seamless user experience in the web browser, because the root and intermediate CAs are already trusted by the browser.

The following guide describes the process of using a third-party-signed certificate for the purpose of encrypting web browser traffic. It is important to note
that a third-party certificate does replace the ACT-signed certificate entirely, because the ACT-signed certificate is still required for signing all not
application-specific messages. Also, this wiki does not attempt to cover any vendor-specific processes or output files, because those can vary over time
and across industry. It is up to each remote site that chooses this option to work with its vendor on any necessary technical details.

This guide also assumes the possibility that a site may initially opt for ACT-signed certificate, but later switch over to a third-party certificate. For all
examples used in our illustration below, this guide uses a fictitious remote site called .shrine.example.edu

The first step for the remote site is to generate a certificate signing request (CSR) using a private key, and to send that CSR to an SSL/TLS vendor such
as InCommon and Symantec. This step can be performed using either or . The vendor will in turn generate a certificate for the openssl keytool
requested fully-qualified domain name (FQDN), and it may provide additional certificates for its root and intermediate CAs. The remote site should work
with the vendor to concatenate all certificates together into one file, so that it would be possible to trace the chain of trust from the endpoint certificate all
the way back to the root CA.

The next step is to ensure that the private key that was used to generate the CSR is in a separate file. If a utility such as was used to generate openssl
the CSR, then a file containing the private key should already be present and this step is unnecessary. If, however, the site used to generate the keytool
CSR, then the following commands should be run to extract the private key from the keystore into a separate file. Execute the following commands to
extract the private key into a file called (the command below assumes that the keystore is called):private_key.pem shrine.keystore

$ keytool -importkeystore -srckeystore shrine.keystore -srcstorepass <source_keystore_password> -srcalias
shrine.example.edu -destalias shrine.example.edu -destkeystore shrine.keystore.p12 -deststoretype PKCS12 -
deststorepass <destination_keystore_password>
$ openssl pkcs12 -in shrine.keystore.p12 -nodes -nocerts -out private_key.pem

This private key should be guarded carefully. Ideal places include an encrypted disk volume and non-persistent, RAM-based disk (such as in /dev/shm
CentOS or Debian). The key can also be stored in an offline and physically secure location.

Next, upon receiving the signed certificate from the third-party CA, the remote site should then bundle the private key with the chained certificates into a
PKCS12 file (or suffix) so that SHRINE can verify the chain of trust from the endpoint certificate all the way back to the root CA. Without this .pfx .p12
trust verification, SHRINE will be unable to use the certificates as intended. For our purpose, the PKCS#12 file format is ideal because it can combine a
private key with all corresponding chained certificates into a single entry in the file, and because the format is accessible by both and . Iopenssl keytool
n the following command (again, assuming that the private key file is called), the contains the new endpoint private_key.pem certificates_file
certificate plus all intermediate certificates plus the root certificate, and the contains only the intermediate certificates plus the root ca_file
certificate. Run this command to bundle the private key, the endpoint certificate, and all intermediate and root certificates into one single entry within the
PKCS12 store:

$ openssl pkcs12 -export -in <certificates_file> -inkey private_key.pem -out shrine.keystore.p12.temp -name
shrine.example.edu-https -CAfile <ca_file> -chain -password pass:<your_pkcs12_file_password>

Note here that the value of the field is "shrine.example.edu-https". The reason is that we will eventually be importing this entire entry back into the -name
main Java keystore where another entry called already exists. Recalling our earlier discussion about the purposes of certificates, shrine.example.edu
we note that entry is responsible for application message signing, while entry is responsible for shrine.example.edu shrine.example.edu-https
web browser encryption. Therefore two distinct keystore entries are necessary.

The newly constructed PKCS12 file should now be imported into the original . Execute the following command, and if prompted to shrine.keystore
overwrite existing entry, answer "yes":

$ keytool -importkeystore -srckeystore shrine.keystore.p12.temp -srcstoretype pkcs12 -srcstorepass
<your_pkcs12_file_password> -srcalias shrine.example.edu-https -destkeystore shrine.keystore -deststoretype jks
-deststorepass <your_destination_keystore_password> -destalias shrine.example.edu-https

Once the import is completed, your shrine.keystore should now look like this:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 4 entries
shrine.example.edu, Oct 31, 2018, PrivateKeyEntry,
Certificate fingerprint (SHA1): 26:0B:FE:98:21:BA:C8:5A:A5:F5:35:79:8E:81:1A:E9:F4:3B:FF:56

shrine.example.edu-https, Jul 31, 2019, PrivateKeyEntry,
Certificate fingerprint (SHA1): EF:AF:5E:D3:1A:97:AA:F2:6D:50:B8:9A:23:98:B5:2C:0C:18:C3:4B

shrine-act-test-ca, Jul 31, 2019, trustedCertEntry,
Certificate fingerprint (SHA1): 13:4D:B5:5C:E3:48:A0:7B:9B:20:22:8B:0B:C1:BE:DD:B9:E4:1B:AD

shrine-act-test.hms.harvard.edu, Jul 31, 2019, trustedCertEntry,
Certificate fingerprint (SHA1): 52:82:A0:6D:D1:48:B2:EA:BB:2C:58:BD:E5:C7:3B:21:75:2B:46:F6

Notice that there are now two (2) entries associated with shrine.example.edu: the original one continues to be used for application signing, and we will
configure the " " entry for use by Tomcat to encrypt web browser traffic.-https

Next, configure the alias entry in Tomcat's to point to the newly imported, third-party-generated certificate:server.xml

<Connector port="6443" protocol="org.apache.coyote.http11.Http11NioProtocol"
 maxThreads="150" SSLEnabled="true" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"
 keystoreFile="/opt/shrine/shrine.keystore"
 keystorePass="xxxxxxxxxx"
 keyAlias="shrine.example.edu-https"/>

Once all configuration files have been updated, restart Tomcat. If everything has been configured properly, you should no longer see any warning
messages from your browser regarding untrusted certificates when accessing your SHRINE host.

	Using third-party-signed certificate in SHRINE for browser encryption

