
1.
2.

Repository Workflow Design Notes
Contents

Requirements
Use Cases
Ontology and Design Principles
About Access Control
API

Requirements
The workflow system provides two important services to repository clients. These services are implemented the repository and only exposed through within
the REST API. Hiding the implementation details is good modularity and security practice.

Mark and track each resource instance through a series of in a certain order; this is the "flow" part of workflow.states
Regulate when a user is allowed to gain to a resource instance and modify its properties.write access

These are the driving the design:requirements

Remove the requirement for all users to have Administrator access to the repository:
Use Workflow transitions and claims to grant each user access to an resource instance.individual write individual
Rely on existing graph-based access control to manage access to unpublished resources.read

Employ role-based access control to manage access to each workflow transition
Allow separate, isolated, streams of workflow. For example, Lab A and Lab B can share a repository without being able even to see each other's
unpublished resources.
Produce user-sensitive reports on:

Transitions available to current user
Resources visible to current user with workflow implications
(This be used for auto-complete result sets)might

Highly configurable and extensible data-driven design, so some unanticipated needs can be met simply by changing internal data and
configuration

Use Cases
Here is the typical expected use of workflow. The blue states are (and thus not indexed nor visible to the public); only the gold state is unpublished
published. Lines with arrows show the possible transitions, and the role(s) permitted to take them. The state is implicit, it is where new instances New
come from.

Two Isolated Labs

The other proposed use case is a pair (or more) of labs which share a repository, but they must not be allowed to see each other's unpublished resources.
In this picture, Lab A's resources are stored in separate workspaces - including a separate published graph and separate withdrawn graph - from Lab B's.

The labs also have separate resource-navigator and curator roles, RNav-A, etc. When a user in the RNav-A role creates a new instance, she must choose
(or take by default, if it is the only one available) the transition out of into the state in Workspace A. Note that the states are labelled A and B but New Draft
they are really the same states, it is the workspace or other graph which separates A from B.&

Presumably the repository's access controls are configured so only Lab A's personnel have read access to the and graphs. Workspace A Withdrawn A
The two graphs must be world-readable, and of type , but they also have to be separate: Resources are not "owned" by any user or Published Published
role. The workflow transitions available on a resource instance are governed by a combination of the and the user's role, so resource's home graph
keeping Lab A's published resources in e.g. the graph will let you configure workflow transitions on that graph so they are only available to Published A
Lab A's users.

Ontology and Design Principles

Resource Instance Properties

Workflow is expressed as two properties that be asserted on resource instances. The statements using these predicates live on the (may internal metadata
) graph, so they are visible to the world but can only be modified by administrators and internally-mediated actions. The properties are::NG_Metadata

:hasWorkflowState---identifies the current state this instance is "in"; value is one of the WorkflowState object URIs
:hasWorkflowOwner---names the repository user who is currently asserting a claim on the instance. Value is URI of that user account.

WorkflowState

This is the existing repository class; no ontological changes, it is essentially a controlled vocabulary with which to enumerate the possible states. Unlike
fake workflow, the does not grant access, it is transitions which have access controls. An instance has the following properties:state

rdfs:label
rdfs:comment---more verbose description
:order---literal used to determine sort order in visual presentation, required.

The set of States is fixed and relatively immutable. Normally a repository administrator never needs to add or remove states. They always do so by can
uploading RDF with the service, but it is not expected to be necessary. States live in the (internal metadata) graph./graph NG_Internal

We will add a state, named , representing a resource instance in the process of being created. The state only exists momentarily inside the creation New"
process to drive a workflow transition.

WorkflowTransition

This class represents a possible from an state to a (relatively) in the workflow engine. Think of workflow as a graph, with states as transition initial final
nodes, the transitions are the edges. An instance has the following properties:

rdfs:label
rdfs:comment---more verbose description
:workspace---URI of target workspace or wildcard URI if unlimited
:initial---URI of WorkflowState from which this starts
:final---URI of WorkflowState to where this ends
:action---fully qualified class name of Java class implementing action
:actionParameter---an optional single parameter which gets passed to action method, useful when an action implementation is shared by
multiple transitions.
:order---literal used to determine sort order in visual presentation, optional. Recommend using a typed literal, xsd:integer, and putting a group
of transitions within the same 1000 range, e.g. 1010, 1020, 1030, etc with spacing to allow insertions.

1.
2.

(implied) access control list - implemented by repository ACL mechanism, only users with READ access are allowed to take this transition.

Transitions are actively managed by the repository administrator through an admin UI page. They live in the (intenral metadata) graph. NG_Internal
There is a sample set of transitions loaded at repository initialization but they are expected to be modified locally.

Actions

Actions are instances of a Java class implementing the interface. Its method gets called with the resource instance, WorkflowAction onTransition()
and a transition-specific (an RDF value object specific to the workflow transition, provided so the same action class can be re-used with different parameter
transitions). For example, a transition that moves a resource instance to a different named graph would use a common move-to-graph action with the
destination graph as its parameter. Planned stock actions include:

New instance in a designated graph
Move instance to a new graph

About Access Control
Workflow the Repository's internal access control system to grant write (insert/delete) access to a resource when a user establishes a manipulates claim
on it. Since this mechanism circumvents the established rules of access control, it is absolutely essential that it only grant write access in the correct
circumstances. The repository administrator ought to be easily tell who can obtain write access to what resources by examining a small, manageable,
amount of data.

The rules for granting write access are straightforward and fairly intuitive. To gain write access by asserting a claim on a resource instance, the user must:

Have to the instance (which seems obvious, but isn't necessarily..)read access
Have leading out of the instance's .access to a workflow transition current state

The transition's must match the instance's home graph if it is workspace-limited.workspace
The transition's matches the instance's current state.in state
Current user has access to the transition.READ

This is intuitive, if you consider one of the twin purposes of workflow is to instances from state to state. You must have access to the state-progress
changing aspect of workflow to take advantage of its access-control circumvention.

For example, consider the simple workflow pattern developed for release 1.0: When a resource is in state, RNavs are allowed to edit it. When an Draft
RNav pushes it to the state, Curators can edit it (because they can push it to , or back to) but RNavs cannot, since they have no Curation Published Draft
access to workflow transitions. Since the RNavs have turned it over to the Curators, the Curators that they are editing it. It would be surprising expect done
to have an RNav edit an instance in ; so it is . If the instance needs more attention from an RNav, the curator that by sending Curation not allowed signals
it back to state. At that point, the RNav can claim and edit it, but the curator cannot touch it until the RNav signals he is done by pushing it back to Draft
the state.Curation

For each user, workflow defines a of resource instances he/she can claim. Depending on the user's role and the configuration of the system, these pool
may only appear in one state and one workspace, or many states and/or graphs.& For example, the typical curator has access to resources in the Curation
, , and states.Published Withdrawn

QUESTION: What if the Claim operation is bound to a specific transition? The user would have to make the claim in the context of a transition, and we
could then have a customizable method associated with the claim. This would let us configure, e.g., whether or not to make the instance writable. When
claiming a Withdrawn or Published instance, for example, you might not want to allow it to be written until it goes back to Curation. Is this useful or
necessary?

API
The REST API requests are:

Show Transitions/repository/workflow/transitions

Method: GET or POST
Args:

---restrict results to transitions applying to given workspace (includes wildcards). Default is to list all.workspace=URI
---type of result.format=mime

Returns the selected workflow transitions as SPARQL tabular results.
Result columns are:

Subject URI
Label
Description
Workspace URI
Workspace Label
initial-state URI
initial-state Label
final-state URI
final-state Label
allowed - boolean literal, true if current user has permission on this transition

1.
2.
3.

1.
2.

Show Resources/repository/workflow/resources

Method: GET, POST
:Args

---workflow state by which to filter, or ' ' for wildcard.state=URI|all all
---include only instances of this tyep (by inference counts) - default is no restriction.type=URI

---when , unclaimed resources are included in the report.unclaimed=(true|false) true
Default is .true

---show, any selected resources:*owner=(self|all|none) in addition to unclaimed

self---those claimed by current user
all---instances claimed by anyone
none---includes no claimed resources.
Default is . Note that the combination and is illegal.self unclaimed=false owner=none

---restirct results to resources in a given workspace; optional, default is all avaialble worksaces.workspace=URI
---type of result, one of the SPARQL query formats.format=mime

---columns to include in results, see description below.detail=(brief|full)
---add this triple pattern to SPARQL query. May refer to variables as described below. Value is a literal hunk of triple addPattern=SPARQL-text

pattern ready to be inserted into the patterns of a query. It may refer to the result variables mentioned below, e.g. .SELECT ?r_type
---add these variables to results columns. value is expected to be a space-separated series of query variables addResults=*query-variable

(which must appear in the triple pattern), e.g. "?lab ?labname"
---add a SPARQL modifiers clause to the query. Modifers include ORDER BY, LIMIT, and OFFSET and can be addModifiers=modifiers

used to implement pagination.

This request returns descriptions of a selected set of resources in SPARQL tabular result form. It is intended to be used to populate menus and
autocomplete vocabularies, as well as more complex table views.

The level of detail includes columns:brief
r_subject- URI of resource instance
r_label- label of resource instance
r_type- URI of instance's asserted type

The level of detail adds the fields:full
r_created- created date from provenance
r_owner*- URI of workflow claimant if any
r_ownerLabel- the of if it is bound (and has a label)rdfs:label r_owner
r_state- URI of workflow state

Any query variables you specified in the list are added to either result.addResults

Create New Resource Instance/update?action=create

The action that creates a new resource instance now includes some workflow behavior: There is an transition into the workflow /update implied New
state. This means there must a transition available to the current user and chosen destination workspace; if there are multiple transitions, one is chosen be
arbitrarily.

Note that requires that the user have access to the workspace graph in which the instance is created. This might be /update?action=create still Add
an anachronism since workflow transitions bound to workspaces (provided there is no wildcard workspace) can enforce access control. Also, there is also
also no way to create an instance as a proxy for another user.

Claim Resource Instance/repository/workflow/claim

Method: POST
Args:

---subject to claimuri=URI
---optional, user who asserts the claim; default is authenticated user.user=

Asserts a claim on the given instance.This requires the following:

user must have access to a transition of the current state.out
user must have to instanceread access
there is on the instance.no existing claim

There is no result document. The status indicates success with 200.

Side-effects:

Adds insert and delete access to the instance for the user.claiming
Sets property to the claimant (in an internal metadata graph):hasWorkflowOwner

Release (claimed) Resource Instance/repository/workflow/release

Method: POST
Args:

---subject to releaseuri=URI

1.
2.

1.
2.
3.
4.

1.
2.
3.

Requires: Current user is the owner, Administrator role.or

Side effects:

Removes insert and delete access to the instance for the current user.
Removes * property (in an internal metadata graph):hasWorkflowOwner

Transition on Resource Instance/repository/workflow/push

Method: POST
Args:

---subject to transitionuri=URI
transition=URI}}---indicates transition to take

Requires:

read access to instance.
must be claimed
user should be either claim owner or Administrator
user must have access on the chosen Transition.READ

Side effects:

Implied release of any current claim (and all applicable side-effects of)that
Executes associated with this transaction, if any.action
Resource's workflow state will become the state of the transition.final

Administrative UI

The workflow mechanism also requires a couple of administrative UI pages, so admins can configure and examine the workflow system, and manage
instances. All of these functions require the role.Administrator

Manage Workflow Transitions

This page lists all workflow transitions, along with enough salient details of each to select the one to edit. For example, label, initial/final states, and
workspace. The master page also includes a link to create a new transaction (by filling in the detail page).

Each transition has a link to a "detail" page that lets the administrator examine and change all details of the transition. There is also a function.delete

Possibly add a link to export selected transitions (see next section).

Export and Import Transitions

Dump a serialized-RDF representation of the transitions which can be imported later in repository. Options to select transitions, include access any
controls or not, etc. This may only appear as a REST-type HTTP transaction, not an interactive Web form.

Manage Claims

List resource claimed instances (restricted by workspace, user, etc) and allow the admin to the claim, either individually or on a group. Includes release
sorting and pagination since results may be large.

	Repository Workflow Design Notes

