
SWEET Developers' Guide

Introduction and Main Data Objects
EIInstance
EIInstanceMinimal

Datatools Back End
Configuration
Workflow and access control
Security and logging in
Getting ontology information
Getting data of various kinds (AbstractRepositoryProvider and its subclasses)

SWEET Front End
Servlet
RPC
ApplicationState and how the front end redraws
MainController
ResourcesGrid
Displaying and editing single resources
EditWidget and EditWidgetCollection

Introduction and Main Data Objects
This is a developers' guide to the eagle-i data tools. It will focus primarily on the SWEET (Semantic Web Entry and Editing Tool, formerly, and confusingly,
referred to as "the datatools webapp" or "datatools"). Several of the other user-level data manipulation tools (bulk data management, aka
datamanagement; bulk data import, aka ETL; and the extraction of resources from published research articles and the like, aka nlp) will come up in
passing. They each should have a guide, and this developers' guide will not attempt to cover them in any detail.

This guide begins with the back end of SWEET, most of which can be found in org.eagle-i.datatools (the eagle-i-datatools-common module). The backend
components are held in common by all of the datatools; they are not specific to the SWEET. The (; in the SweetServlet org.eaglei.ui.gwt.sweet d

 package), in this context, is the user-facing endpoint for the data tools backend.atatools.sweet.gwt

EIInstance

All of the data tools rely on two key abstractions: the and the . (In reality, the is also important, EIInstance EIInstanceMinimal EIBasicInstance
but datatools only sees the through the , so their attributes are conflated for the purposes of this discussion.) An EIBasicInstance EIInstance EIInst

 is the java-side representation of the collection of RDF statements (from the repository and from the ontology) about a particular subject (resource) in ance
the repository.The only contains representations of those RDF statements that are relevant to eagle-i users. are used only for EIInstance EIInstances
the resources captured in eagle-i.

For example, a user of eagle-i would be an ; eagle-i has no interest in capturing (more than the minimum) information about its users. On not EIInstance
the other hand, a DNA sequencer be an .would EIInstance

As mentioned, the EIInstance only represents RDF statements that eagle-i users need. So a DNA sequencer would have the type "DNA sequencer", but it
would also have a type of "Instrument." In an , it would have the type "Continuant" or "Thing" even though there will certainly be an EIInstance not
inferred or inferrable statement in the repository to that effect. What types can be retrieved for (and cached in) an depend on annotations in EIInstance
the application ontology; if the type is annotated as , it's included in the type hierarchy of the . Every ClassGroup_DataModelCreate EIInstance EIIn

 must also have a label and (of course) a URI; these are encapsulated in its .stance EIEntity

An also contains all the other relevant statements, grouped into types of properties. Properties have two relevant dimensions: whether they EIInstance
come from the eagle-i ontology or not, and whether their values are references to other subjects in the repository (or ontology) or are complete in
themselves. Bear in mind that (almost) all properties can legitimately have multiple distinct values for the same property, so the keeps them EIInstance
as multimaps. Since the values are all distinct and have no intrinsic ordering, the keeps the values of a particular property as a Set.EIInstance

Ontology properties are always displayed in a resource page, either through search or through the SWEET webapps. Non-ontology properties are extra,
either because of ontology changes or because they are managed by the repository. Only the datatools applications bother to load the non-ontology
properties.

Datatype properties are the properties with values that are complete in themselves. They are represented as a Map<EIEntity, Set<String>>
Boolean properties, date properties, and of course text properties fall into this category.

Object properties are the properties with values that refer to other subjects in the repository or ontology. They are represented as , Map<EIEntity
. In practice, the SWEET applications need to be able to distinguish between object properties that refer to terms from the Set<EIEntity>>

ontology and ones that refer to other instances in the repository. Doing so requires a separate call to the server.

Non-ontology datatype properties are datatype properties that don't appear in the eagle-i ontology. Many of the so-called "provenance metadata"
properties added by the repository itself (creation date, last modified date, contributor) are non-ontology datatype properties. The is_stub
property is another, as are the standard and . In addition, any datatype properties that are associated with an instance but note curator note
are no longer relevant to the instance's type (either because of a change to the ontology or because the user changed its type) will appear here.

Non-ontology object properties are the object properties that don't appear in the eagle-i ontology. The remaining "provenance metadata"
properties, like workflow state and workflow owner, are non-ontology object properties.

EIInstanceMinimal

The is the core representation for listing resources in the webapps (both SWEET and search front ends). As the name suggests, it EIInstanceMinimal
contains only the minimal information required to list the relevant instances.This includes:

The label and URI
The type
The resource-providing organization (lab, center, ...) that contributed this resource
All the supertypes up to the eagle-i base type (for filtering)
Workflow state and owner
Creation and modification dates
Whether or not the resource is a "stub"

Datatools Back End

Configuration

Datatools backends (particularly for SWEET and ETL) need to know the URL of the repository to point to. Because eagle-i applications use , it's not https
possible to point to . Instead, the repository location is specified in a configuration file.An example file is found in .localhost eagle-i/examples

Datatools relies on the to find this property file.Developers and deployers need to put that file on an appropriate location in order for the classloader
SWEET webapp to find it. In the reference implementation, the file is found in . catalina.home/eaglei/conf catalina.home/conf/catalina.

 has been modified to contain these lines:properties

common.loader=${catalina.base}/eaglei/conf,${catalina.base}/lib,${catalina.base}/lib/*.jar,${catalina.home}
/lib,${catalina.home}/lib/*.jarorg.eaglei.home=/opt/tomcat6/eaglei/

Datatools web applications will look in the loader's classpath to find the relevant configuration file.

Workflow and access control

The repository provides a mechanism for controlling which users can edit which resources. Details can be found in the Repository Workflow Design Guide.
It has four core notions: ownership, workflow state, transitions between states, and roles assigned to users (or types of users), which determine which
transitions are legal for each user type. All workflow privileges are based on the URI of the user in the repository; therefore, all datatools operations (listing
resources, editing them, making workflow transitions, etc.) require a repository username and password.

Workflow states are configurable in the repository; the default set is:

New
Draft
In Curation
Published (in the Published graph, which makes the resource accessible to search)
Withdrawn (in the Withdrawn graph, which makes the resource inaccessible to search and marks it as being no longer valid for one reason or
another)

Transitions are configurable, and are specified by a URI and label. Each has a precondition: the workflow state the resource must be in for this also
transition to succeed, and a postcondition: the workflow state this transition will put the resource in when it succeeds. As a result, there are 3 separate
"Return to Draft" transitions:

A list of transitions can be found at of a machine with an eagle-i .url repository]/repository/workflow/transitions

The repository returns only a list of the transitions that are allowed for the current user, based on the user's role in the repository. (User roles are also
configurable in the repository, and again, the repository has a default set of roles with permissions. These are largely beyond the scope of this document.)
For historical reasons, the transition query returns with a boolean indicating whether it is legal for the current user; in practice, a user will only see
transitions they're allowed to perform.

https://open.catalyst.harvard.edu/wiki/display/eaglei2x/Repository+Workflow+Design+Notes

In the SWEET, these transitions are represented by . These transitions [will be] loaded from the org.eaglei.ui.gwt.WorkFlowTransition
repository, as are the states. The is responsible for this loading and managing.PrivilegesInfoProvider

In order to prevent conflicting edits, each resource can only be edited by a single "owner". In order to edit a resource, a user must first claim the resource.
The user is then set as the resource's workflow owner in the repository. No one else can claim the resource until it has been shared, either explicitly via the
"share" button, or by a workflow transition. All workflow transitions clear existing ownership.

Security and logging in

Obviously, then, datatools requires a user-specific login to the repository, while search can make do with a single generic user with no privileges (and
access only to the Published graph). Furthermore, datatools needs to retrieve the user's valid transitions in order to be able to present their options
correctly. Both applications, though, need to have logged into the repository in some fashion, and both need to keep track of a user's activity and get rid of
connections when a user has been inactive for too long. The (and) in AuthenticationManager AuthenticationProviders org.eaglei.

 have the job of handling logging in and stale sessions. Because the datatools operations all go to the eagle-i repository, all services.authentication
SWEET (and other datatools) connections use the and the .StandardAuthenticationProvider Apache4xHttpConnectionProvider

Below is an interaction diagram for a SWEET login.

A login request goes to the , which logs in through the , which has been configured to use a DatatoolsSecurityProvider AuthenticationManager
 (and therefore present credentials to the eagle-i repository specified by the). RepositoryAuthenticationProvider DatatoolsConfiguration

The then requests a User from the , using the sessionId from the DatatoolsSecurityProvider PrivilegesInfoProvider AuthenticationManag
 login. The requests information about the current user, including the workflow transitions (if any) this user is authorized to er PrivilegesInfoProvider

perform. It populates a User object with that information (which is also parceled out into a map from workflow state to the list of allowed transitions, to
facilitate determining what if any actions a user is allowed to perform).

Getting ontology information

Many operations require information from the application and domain ontologies. Making that information available is the role of the (JenaEIOntModel ea
) at the back end. The front-end equivalent is the (gle-i-model-jena: org.eaglei.model.jena ModelServlet eagle-i-common-ui-model-

). The details of the servlet and the are beyond the scope of this document. For the gwt: org.eaglei.model.gwt.server JenaEIOntModel
purposes of datatools and SWEET, all information about the ontologies is encapsulated in these classes.

Getting data of various kinds (and its subclasses)AbstractRepositoryProvider

In order to allow a user to enter and edit data, SWEET must retrieve data in various forms from the ontology and repository. The relevant interfaces are
found in , and implementations in .org.eaglei.datatools.provider org.eaglei.datatools.jena

These requests may also be made to the , which is NOT a subclass of org.eaglei.services.repository. RepositoryInstanceProvider Abst
. Its behavior is identical for the purposes of this interaction diagram.ractDatatoolsRepositoryProvider

AbstractDatatoolsRepositoryProvider and its subclasses make a few assumptions: there's a known , and the user RepositoryHttpConfig
has logged in to the repository, so that the can provide connections from the user's session ID.ConnectionManager

Subclasses of include:AbstractDatatoolsRepositoryProvider

RepositoryCrudProvider: implements . Performs such functions as getting a new instance ID from the repository, creatingCrudProvider
/updating/deleting an instance in the repository, making a new instance with the same properties as an existing instance except for the label
(deep copy), etc. It does have the ability to fetch an instance from the repository: that's the job of the .not RepositoryInstanceProvider
(Creation and deletion can happen using only the type or URL, respectively; update requires having fetched the instance first.)
RepositoryListResourcesProvider: implements . Allows several ways of listing resources. These methods all ListResourceProvider
return lists of .EIInstanceMinimal
RepositoryQueryProvider: implements . Allows for arbitrary SPARQL queries to the repository.QueryProvider
RepositoryWorkflowProvide: implements {{ WorkflowProvider}}. Allows user to claim or share resources, or to request transitions from the
current workflow state to another.

The datatools backend shares instance retrieval functionality with the search applications. The (RepositoryInstanceProvider org.eaglei.
) performs this function.services.repository

SWEET Front End
The SWEET is built in GWT. Documentation for GWT can be found at this guide assumes some familiarity with GWT.http://code.google.com/webtoolkit

Servlet

The is a thin wrapper around a collection of as described above. Each call to the servlet checks for a SweetServlet AbstractRepositoryProviders
valid , then dispatches the call to the appropriate provider.sessionId

RPC

As usual for a GWT application, much of the package is taken up by definitions of the services and their org.eaglei.ui.gwt.sweet.rpc
asynchronous counterparts. and are different, and important. The encapsulates ClientSecurityProxy ClientSweetProxy ClientSecurityProxy
authentication and session-related behavior for the . A number of front-end classes register as listeners for changes to sessions; the ClientSweetProxy C

 is responsible for notifying them when a session becomes valid or invalid. Similarly, detects when lientSecurityProxy the ClientSecurityProxy
a user is not authorized to access the SWEET webapp (currently, if that user is not permitted to create resources).

http://code.google.com/webtoolkit/

ClientSweetProxy is a single point for all of the UI classes to talk to the backend as needed. In addition to the , the SweetServlet ClientSweetPro
 talks to a in order to fetch ontology information that certain front-end operations require. In a few cases, the xy ModelService ClientSweetProxy

makes multiple server calls for a single user operation, in order to be sure to have the most up-to-date data. Examples include claiming (where first the
proxy verifies that the resource is not out of date), and sharing, which re-fetches the instance after a successful share. For now, creating a new instance
forces the workflow state to Draft, so that the instance has a valid workflow state; the alternative is to re-fetch the instance (or instances, when creating a
resource also creates stub resources).

ApplicationState and how the front end redraws

ApplicationState object is a central (singleton) location for various general bits of information the SWEET webapp needs. It tracks several selections a
user has (or has not) made, and allows the UI to fetch and draw the correct information. It holds a list of resource-providing organizations fetched from the
repository, as well as a cache of the that are known to be embedded and those that are associated with labs (and other resource-creating EIClasses
organizations) and those visible for overall browsing. It's also where the client caches class definitions for use in tooltips.

The core of behavior is in the .Through the , the handles history ApplicationState's QueryTokenObject QueryTokenObject ApplicationState
navigation, browser refreshes, session timeouts, and bookmark sharing. The converts between a #history url string and specific QueryTokenObject EIE

 (and a few other settings) to determine what will be drawn. The handles certain rules (whenever you start showing lists of ntities QueryTokenObject
resources, reset the pagination to the default), and maintains:

some entities for use by the other front-end classes (type entity, instance entity)
a map from keys to values for going back and forth to the url history string ("mode", "typeUri", etc). The entities must be built out of two entries in
the map; for each entity, uri and label are stored separately.

The maintains a list of ; whenever it gets an update that should change the history, it ApplicationState ApplicationStateChangeListeners
updates the , then writes into the GWT history mechanism and notifies its listeners. Bookmarks and browser QueryTokenObject QTO.toString()
refreshes work by first parsing the #history component of the url into the , and then treating it as an ApplicationState's QueryTokenObject Applic

 event.ationStateChange

Single-resource (in this case lab) view:

Listing a particular type of resources for a specific lab:

Three classes implement : the , the .ApplicationStateChangeListener MainController LeftListPanel, and the {{BreadcrumbWidget

BreadCrumbWidget
The displays a trail of resource provider (if any) and resource type selected (if any), with an initial link back to the workbench always.BreadcrumbWidget

LeftListPanel
The is responsible for displaying the current resource providing organization (lab, division, etc), and a list of available resource types.The LeftListPanel

 has two modes: when a lab or other resource provider is selected, and when the user is instead browsing people and resources. Its two LeftListPanel
modes are shown below.

When the user has selected a lab (above left), the selection is stored in the .The then retrieves the selected lab ApplicationState LeftListPanel
from the , and displays the top-level types from the 's list. When there's no lab ApplicationState ApplicationState resourceTypesForProvider
selected (above right), the instead uses .In either case, if the 's is ApplicationState resourceTypesForBrowse ApplicationState typeEntity
populated, the highlights the selected resource type (Protocol in above left); otherwise, it selects the "All Resource Types" entry{ (above LeftListPanel
right)

MainController

The uses the (an enum from) from the to determine what belongs in the main area MainController Mode QueryTokenObject ApplicationState
of the window. Whenever the application state updates, the checks first for a valid user (if there's none, it clears everything), and then MainController
checks the mode.

The possible modes are broken down into three sub-groups: workbench, editing/viewing single resources and listing resources.
The workbench group contains only one mode that shows a landing page (Workbench).

WORKBENCH: shows a landing page with a number of standard options. For other application domains, it will probably make sense to create a
new Workbench class for this mode to invoke.

Editing/Viewing single resources contains three modes:

EDIT: edit a single resource; show the edit form (including all possible properties as supplied by the domain ontology)
VIEW: shows all the properties of a single resource, but only those that have been annotated by a user. In other words, all the *actual* properties
(including the properties not shown in search) but not the *potential properties shown in mode.EDIT

DUPLICATE: placeholder mode; application state change should *not* be invoked for this mode. Show an edit form with a new instance,
populated from the values of an existing instance. Clears the label field, to force users to add a new label.

Listing resources contains seven modes, which are differentiated based on having certain criteria met:

LIST: list all resources meeting the criteria (including the filter criteria) from the . If a exists, show only ApplicationState typeEntity
resources with that as a base type (otherwise, show all resources). If a exists, show only resources belonging to that lab (or providerEntity
other resource provider). The is set to this mode by the , or after a resource has been deleted.ApplicationState LeftListGridRowWidget
FILTER: the mode used when the user clicks the "go" button in the . Shows only resources meeting the ApplicationState FilterPanel
description from the , further refined by the options (resources belonging to a subclass, only resources in ApplicationState FilterPanel
Draft mode, etc).
RESOURCES: a (hackish) way to get an empty resources grid shown. In highly-populated repositories, trying to show all resources of all types
from all labs is prohibitively slow. Resources mode short-circuits the process.
REFERENCES: List all the resources that refer to the from the . Resource A refers to resource B if instanceEntity ApplicationState
resource B is the value of a some property on resource A. (In rdf-speak, we're looking for all the subjects A where B is the predicate for some
statement about A, and A is an instance of one of the types we consider as eagle-i resources.)
STUBS: List all the resources that were created through a "create new" mechanism in the edit form.
PROVIDERS: Shows a list of all organizations to which resources can or should be added. [Note: currently broken--shows all organizations]
MYRESOURCES: Show exactly the resources for which the current user is the editor/has claimed the resource.

For any of the modes that involve listing resources, the clears its panel, fetches any relevant resources in the form of a list of MainController EIInstan
, and draws a . For the edit, view, and duplicate modes, it clears its panel and invokes the to fetch the ceMinimal ResourcesGrid FormsPanelFactory

appropriate resource (and possibly ontology model information) and draw the page.

ResourcesGrid

For any mode in the listing resources group, the retrieves a list of , and then draws a . The MainController EIInstanceMinimals ResourcesGrid Re
 is responsible for drawing lists of resources, of whatever sort. The has a at the top, which allows filtering sourcesGrid ResourcesGrid FilterPanel

the list by any combination of subtype, current owner (claimed by user, or all), and workflow state. It also has two (one at the top PaginationWidgets
and one at the bottom), which determine how many resources to show per page and which page to view.Note that no total counts are available (and page
sizes may be slightly off) because a single resource may be returned multiple times from the repository, but is filtered out at the front end.

The displays a list of , each of which wraps an .The displays relevant ResourcesGrid GridRowWidget EIInstanceMinimal GridRowWidget
information from the , and provides links to allow the user to claim or share the resource (if it's in a workflow state that the user can EIInstanceMinimal
change), and to edit or delete it once it's been claimed. The also has a checkbox which interacts with the 's actions GridRowWidget ResourcesGrid
drop-down to allow bulk workflow transitions.

Displaying and editing single resources

Panels for editing and viewing single resources are constructed by the , which is responsible for fetching the instance (or getting a FormsPanelFactory
new, empty instance) and constructing a to display it.DatatoolsInstancePanel

Much of the instance display logic is shared with the eagle-i search applications, so the base Renderer interface, the abstract OntologyPropertiesRend
, and the abstract are all found in .erer InstancePanel org.eaglei.ui.gwt.instance

The InstancePanel heirarchy:

The Renderer heirarchy:

The job of an is to draw the properties specified for the instance by its type in the domain ontology. It draws them in an OntologyPropertiesRenderer
order specified by the application ontology. Specific subclasses are responsible for picking exactly how to draw the properties--as labels, as links, or as
widgets for editing.

The draws properties found on the given instance but not specified in the domain ontology. Important examples NonOntologyPropertiesRenderer
are the workflow owner and workflow state, creation and modification dates, and the like. The eagle-i application ontology also specifies comments and
curator notes for each resource; these are also non-ontology properties.

The is the ontology renderer for viewing resources in a datatools context. It creates a for each OntologyPropViewRenderer LabelValuesWidget
property that actually has a value on the instance.

The is the ontology renderer for editing resources in a datatools context. Since it needs to present all possible properties, OntologyPropEditRenderer
it loads the properties from the as well as the values that currently exist on the instance (if any). The draws EIOntModel OntologyPropEditRenderer
widgets that are subclasses of (usually wrapped in).EditWidget EditWidgetCollections

EditWidget and EditWidgetCollection

As previously mentioned, the values for a given property of an is (generally) a set of values (collection that is unordered and for which each EIInstance
value must be unique). As a result, when the user changes a value using an edit form, there needs to be a mechanism for tracking which value is being
replaced.The hierarchy performs that function.EditWidget

The base class holds a reference to the it is editing, the for which it is the widget, and, crucially, an EditWidget EIInstance EIProperty oldValue
field. Since properties can be either objects (is a string; if EIURI}}s) or data types (strings, booleans, dates, etc), the {{oldValue
the property is an object property, the subclass must use value to get the correct .getOldEIURI oldValue

Whenever its value field changes, the subclass is responsible for removing the old value (if any) from the and setting to the EIInstance oldValue
current value. Ideally, would be responsible for this behavior in just one place, but only the subclass has the context to determine if the old EditWidget
value will be found in ontology properties or non-ontology properties, object or datatype. Thus, the first abstract method of is .EditWidget removeValue

The other abstract method of is , which is needed by the .EditWidget duplicateBlank EditWidgetCollection

The SWEET handles multiple values for a property through the . The holds a list of , EditWidgetCollection EditWidgetCollection EditWidgets
plus the and the that all the widgets in its collection edit. The is responsible for adding a new EIInstance EIProperty EditWidgetCollection Edit

 of the same type as the previous widget in its list, using the method on that .It can also remove a value (the '-' Widget duplicateBlank EditWidget
link) by calling the relevant 's method.Again, because the values of an 's property are a set, if two EditWidget removeValue EIInstance EditWidgets
in the same are ever set to the same value, changing or removing one will change or remove the value from the EditWidgetCollection EIInstance
entirely. A desirable extension to or would be to prevent a user from ever selecting duplicate values for the EditWidgets EditWidgetCollection
same property.

The subclasses of include:EditWidget

TextWidget: a simple widget for datatype values; property value goes in a text box
TextAreaWidget: a widget for longer datatype values; property value goes in a text area
TermWidget: a widget for displaying and selecting domain ontology terms; values are constrained to valid values from the domain ontology
(usually subtypes of a specified type)
ResourceListWidget: a selection widget for legal values from the repository. Also allows a "create new" option. Selecting the "create new"
option inserts a StubWidget under the . By default, a is populated only with resources of the ResourceListWidget ResourceListWidget
appropriate type from the current lab; the "See choices from all organizations" link queries for all the resources of that type in the repository.
StubWidget: a widget with label and type fields. Only drawn when the user has selected "create new" from a . Creates a ResourceListWidget
new stub instance with the specified label and type; all stubs are saved as part of saving the main instance. (First the stubs are saved; once the
first save has succeeded, the main instance is saved.)
ObjectWidget: a complex widget to allow the user to select a value properly among several allowed ranges (essentially, types).See below.
EmbeddedResourceEditWidget: a widget to draw any embedded instances in the current .EIInstance

The handles properties that have multiple valid ranges for their values. For example, the Manufacturer property of an Instrument can be ObjectWidget
either a Person or an Organization; in order to see the correct values, the user must first select which. Then the adds a ObjectWidget ResourceListWi

 populated with the instances of that type.dget

A more complex case is the Topic of a Protocol. It can be an Organism or Virus, a Disease, or a Biological Process. The Biological Process and Disease
ranges are both types from the domain ontology; when the user selects one of them, they need to see a . An Organism or Virus range, TermWidget
however, is an instance range--the user needs to see a with all the relevant organisms and viruses.ResourceListWidget

	SWEET Developers' Guide

