SWEET Developers' Guide

® [ntroduction and Main Data Objects

© Ellnstance

© EllnstanceMinimal
® Datatools Back End

o Configuration

© Workflow and access control

© Security and logging in

0 Getting ontology information

O Getting data of various kinds (AbstractRepositoryProvider and its subclasses)
® SWEET Front End

© Servlet
RPC
ApplicationState and how the front end redraws
MainController
ResourcesGrid
Displaying and editing single resources
EditWidget and EditWidgetCollection

O O 0O 0O O O

Introduction and Main Data Objects

This is a developers' guide to the eagle-i data tools. It will focus primarily on the SWEET (Semantic Web Entry and Editing Tool, formerly, and confusingly,
referred to as "the datatools webapp" or "datatools"). Several of the other user-level data manipulation tools (bulk data management, aka
datamanagement; bulk data import, aka ETL; and the extraction of resources from published research articles and the like, aka nlp) will come up in
passing. They each should have a guide, and this developers' guide will not attempt to cover them in any detail.

This guide begins with the back end of SWEET, most of which can be found in org.eagle-i.datatools (the eagle-i-datatools-common module). The backend
components are held in common by all of the datatools; they are not specific to the SWEET. The Sweet Ser vl et (or g. eagl ei . ui . gwt . sweet ; inthe d
at at ool s. sweet . gwt package), in this context, is the user-facing endpoint for the data tools backend.

Ellnstance

All of the data tools rely on two key abstractions: the El | nst ance and the El | nst anceM ni nal . (In reality, the El Basi cl nst ance is also important,
but datatools only sees the El Basi cl nst ance through the El | nst ance, so their attributes are conflated for the purposes of this discussion.) An El | nst
ance is the java-side representation of the collection of RDF statements (from the repository and from the ontology) about a particular subject (resource) in
the repository.The El | nst ance only contains representations of those RDF statements that are relevant to eagle-i users. El | nst ances are used only for
the resources captured in eagle-i.

For example, a user of eagle-i would not be an El | nst ance; eagle-i has no interest in capturing (more than the minimum) information about its users. On
the other hand, a DNA sequencer would be an El | nst ance.

As mentioned, the Ellnstance only represents RDF statements that eagle-i users need. So a DNA sequencer would have the type "DNA sequencer”, but it
would also have a type of "Instrument.” In an El | nst ance, it would not have the type "Continuant" or "Thing" even though there will certainly be an
inferred or inferrable statement in the repository to that effect. What types can be retrieved for (and cached in) an El | nst ance depend on annotations in
the application ontology; if the type is annotated as Cl assG oup_Dat aModel Cr eat e, it's included in the type hierarchy of the El | nst ance. Every El I n
st ance must also have a label and (of course) a URI; these are encapsulated inits El Entity.

An El | nst ance also contains all the other relevant statements, grouped into types of properties. Properties have two relevant dimensions: whether they
come from the eagle-i ontology or not, and whether their values are references to other subjects in the repository (or ontology) or are complete in
themselves. Bear in mind that (almost) all properties can legitimately have multiple distinct values for the same property, so the El | nst ance keeps them
as multimaps. Since the values are all distinct and have no intrinsic ordering, the El | nst ance keeps the values of a particular property as a Set.

Ontology properties are always displayed in a resource page, either through search or through the SWEET webapps. Non-ontology properties are extra,
either because of ontology changes or because they are managed by the repository. Only the datatools applications bother to load the non-ontology
properties.

® Datatype properties are the properties with values that are complete in themselves. They are represented as a Map<El Entity, Set<String>>
Boolean properties, date properties, and of course text properties fall into this category.

® Object properties are the properties with values that refer to other subjects in the repository or ontology. They are represented as Map<El Enti ty,
Set <El Enti t y>>. In practice, the SWEET applications need to be able to distinguish between object properties that refer to terms from the
ontology and ones that refer to other instances in the repository. Doing so requires a separate call to the server.

* Non-ontology datatype properties are datatype properties that don't appear in the eagle-i ontology. Many of the so-called "provenance metadata”
properties added by the repository itself (creation date, last modified date, contributor) are non-ontology datatype properties. The i s_st ub
property is another, as are the standard not e and cur at or not e. In addition, any datatype properties that are associated with an instance but
are no longer relevant to the instance's type (either because of a change to the ontology or because the user changed its type) will appear here.

* Non-ontology object properties are the object properties that don't appear in the eagle-i ontology. The remaining "provenance metadata"
properties, like workflow state and workflow owner, are non-ontology object properties.

ElinstanceMinimal

The El | nst anceM ni nal is the core representation for listing resources in the webapps (both SWEET and search front ends). As the name suggests, it
contains only the minimal information required to list the relevant instances.This includes:

The label and URI

The type

The resource-providing organization (lab, center, ...) that contributed this resource
All the supertypes up to the eagle-i base type (for filtering)

Workflow state and owner

Creation and modification dates

Whether or not the resource is a "stub”

Datatools Back End

Configuration

Datatools backends (particularly for SWEET and ETL) need to know the URL of the repository to point to. Because eagle-i applications use ht t ps, it's not
possible to point to | ocal host . Instead, the repository location is specified in a configuration file.An example file is found in eagl e-i / exanpl es.

Datatools relies on the cl assl oader to find this property file.Developers and deployers need to put that file on an appropriate location in order for the
SWEET webapp to find it. In the reference implementation, the file is found in cat al i na. hone/ eagl ei / conf . cat al i na. hone/ conf/ cat al i na.
properti es has been modified to contain these lines:

common. | oader =${ cat al i na. base}/ eagl ei / conf, ${cat al i na. base}/lib, ${catal i na. base}/lib/*.jar, ${catal i na. hone}
/lib,${catalina.home}/lib/*.jarorg.eaglei.home=/opt/toncat6/eaglei/

Datatools web applications will look in the loader's classpath to find the relevant configuration file.

Workflow and access control

The repository provides a mechanism for controlling which users can edit which resources. Details can be found in the Repository Workflow Design Guide.
It has four core notions: ownership, workflow state, transitions between states, and roles assigned to users (or types of users), which determine which
transitions are legal for each user type. All workflow privileges are based on the URI of the user in the repository; therefore, all datatools operations (listing
resources, editing them, making workflow transitions, etc.) require a repository username and password.

Workflow states are configurable in the repository; the default set is:

New

Draft

In Curation

Published (in the Published graph, which makes the resource accessible to search)

Withdrawn (in the Withdrawn graph, which makes the resource inaccessible to search and marks it as being no longer valid for one reason or
another)

Transitions are also configurable, and are specified by a URI and label. Each has a precondition: the workflow state the resource must be in for this
transition to succeed, and a postcondition: the workflow state this transition will put the resource in when it succeeds. As a result, there are 3 separate
"Return to Draft" transitions:

Pre-condition Post-condition
Curation —_— Draft
Published —_— Draft
Withdrawn E—— Draft

A list of transitions can be found at ur | of a machine with an eagle-i r eposi t ory] / reposi t ory/ wor kf | ow/ t ransi ti ons.

The repository returns only a list of the transitions that are allowed for the current user, based on the user's role in the repository. (User roles are also
configurable in the repository, and again, the repository has a default set of roles with permissions. These are largely beyond the scope of this document.)
For historical reasons, the transition query returns with a boolean indicating whether it is legal for the current user; in practice, a user will only see
transitions they're allowed to perform.

https://open.catalyst.harvard.edu/wiki/display/eaglei2x/Repository+Workflow+Design+Notes

In the SWEET, these transitions are represented by or g. eagl ei . ui . gwt . Wor kFl owTr ansi ti on. These transitions [will be] loaded from the
repository, as are the states. The Pri vi | egesl nf oPr ovi der is responsible for this loading and managing.

In order to prevent conflicting edits, each resource can only be edited by a single "owner". In order to edit a resource, a user must first claim the resource.
The user is then set as the resource's workflow owner in the repository. No one else can claim the resource until it has been shared, either explicitly via the
"share" button, or by a workflow transition. All workflow transitions clear existing ownership.

Security and logging in

Obviously, then, datatools requires a user-specific login to the repository, while search can make do with a single generic user with no privileges (and
access only to the Published graph). Furthermore, datatools needs to retrieve the user's valid transitions in order to be able to present their options
correctly. Both applications, though, need to have logged into the repository in some fashion, and both need to keep track of a user's activity and get rid of
connections when a user has been inactive for too long. The Aut hent i cati onManager (and Aut henti cati onProvi ders)inorg. eagl ei .
services. aut henti cati on have the job of handling logging in and stale sessions. Because the datatools operations all go to the eagle-i repository, all
SWEET (and other datatools) connections use the St andar dAut henti cati onPr ovi der and the Apache4xHt t pConnect i onProvi der.

Below is an interaction diagram for a SWEET login.

Datatools
SweetServiet Security
Provider

Authentication RepoHittp Privileges
Manager Config InfoProvider

_
login

get repository URL

login

session ID
(later stored in User)

getUserinfo
requests lists of allowed workflow transitions for current
user

org.eaglei datatools User

popul ated with user entity (name & URI), session
D, list of allowed w orkflow transitions, and legal
transitions from each workflow state

User

A login request goes to the Dat at ool sSecuri t yProvi der, which logs in through the Aut hent i cat i onManager , which has been configured to use a
Reposi t or yAut hent i cati onProvi der (and therefore present credentials to the eagle-i repository specified by the Dat at ool sConf i gur ati on).

The Dat at ool sSecuri tyProvi der then requests a User from the Pri vi | egesl nf oProvi der, using the sessionld from the Aut hent i cati onManag
er login. The Pri vi | egesl nf oProvi der requests information about the current user, including the workflow transitions (if any) this user is authorized to
perform. It populates a User object with that information (which is also parceled out into a map from workflow state to the list of allowed transitions, to
facilitate determining what if any actions a user is allowed to perform).

Getting ontology information

Many operations require information from the application and domain ontologies. Making that information available is the role of the JenaEl Ont Mbdel (ea
gl e-i -nodel -j ena: org. eagl ei . nodel . j ena) at the back end. The front-end equivalent is the Model Ser vl et (eagl e-i - common- ui - nodel -
gwt: org.eagl ei. nbdel . gwt . server). The details of the servlet and the JenaEl Ont Mbdel are beyond the scope of this document. For the
purposes of datatools and SWEET, all information about the ontologies is encapsulated in these classes.

Getting data of various kinds (Abst r act Reposi t or yPr ovi der and its subclasses)

In order to allow a user to enter and edit data, SWEET must retrieve data in various forms from the ontology and repository. The relevant interfaces are
found in or g. eagl ei . dat at ool s. provi der, and implementations in or g. eagl ei . dat at ool s. j ena.

AbstractDatatools] .
SweetServlet RepositoryProvider Connection Repository

subclass* Manager HttpConfig

makes request (get
instance, perfarm
warkflow action, etc) to
appropriate subclass of
AbstractDatatoolsRepo
sitaryProvider

get full UEL for this request (use enum
relevant to this method)

appropriate URL

send reguest-specific
parameters and headers to
connection manager using
full URL

return content,
typically as rdf-xml

parse results
into expected

These requests may also be made to the or g. eagl ei . servi ces. repository. RepositorylnstanceProvider, whichis NOT a subclass of Abst
ract Dat at ool sReposi t or yProvi der. Its behavior is identical for the purposes of this interaction diagram.

AbstractRepository Provider

references to AuthenticationM anagg#
CannectionManager

Abstract Data Datatools Repositor Reposito
Datatools P y P Yy
Reposito Management Security Instance Privileges
Pfovi de? Provider Provider Provider InfoProvider
halds a
Repository halds a holds a holds a
HttpCanfig: Repaositary Repositary Repositary
user HttpCanfig HitpCanfig, HttpConfig
assumed to assumed to
be logged in be logged in
also holds
factaries far
Ellnstance,
Ellnstance
Minimal

Abst ract Dat at ool sReposi t oryProvi der and its subclasses make a few assumptions: there's a known Reposi t or yHt t pConf i g, and the user
has logged in to the repository, so that the Connect i onManager can provide connections from the user's session ID.

Subclasses of Abst r act Dat at ool sReposi t or yProvi der include:

® RepositoryCrudProvider:implements Cr udProvi der . Performs such functions as getting a new instance ID from the repository, creating
/updating/deleting an instance in the repository, making a new instance with the same properties as an existing instance except for the label
(deep copy), etc. It does not have the ability to fetch an instance from the repository: that's the job of the Reposi t oryl nst ancePr ovi der .
(Creation and deletion can happen using only the type or URL, respectively; update requires having fetched the instance first.)

® RepositorylLi st ResourcesProvi der:implements Li st Resour cePr ovi der . Allows several ways of listing resources. These methods all

return lists of El | nst anceM ni mal .
® RepositoryQueryProvi der:implements Quer yProvi der . Allows for arbitrary SPARQL queries to the repository.
® Reposi toryWr kf | owPr ovi de: implements {{ WorkflowProvider}}. Allows user to claim or share resources, or to request transitions from the

current workflow state to another.

The datatools backend shares instance retrieval functionality with the search applications. The Reposi t or yl nst ancePr ovi der (or g. eagl ei .
servi ces. reposi t ory) performs this function.

SWEET Front End

The SWEET is built in GWT. Documentation for GWT can be found at http://code.google.com/webtoolkit this guide assumes some familiarity with GWT.

Servlet

The Sweet Ser vl et is a thin wrapper around a collection of Abst r act Reposi t or yPr ovi der s as described above. Each call to the servlet checks for a
valid sessi onl d, then dispatches the call to the appropriate provider.

RPC

As usual for a GWT application, much of the or g. eagl ei . ui . gwt . sweet . r pc package is taken up by definitions of the services and their

asynchronous counterparts. C i ent Securi t yProxy and C i ent Sweet Pr oxy are different, and important. The Cl i ent Secur i t yPr oxy encapsulates
authentication and session-related behavior for the O i ent Sweet Pr oxy. A number of front-end classes register as listeners for changes to sessions; the C
I'i ent Securi t yProxy is responsible for notifying them when a session becomes valid or invalid. Similarly, t he C i ent Securit yPr oxy detects when
a user is not authorized to access the SWEET webapp (currently, if that user is not permitted to create resources).

http://code.google.com/webtoolkit/

Cl i ent Sweet Pr oxy is a single point for all of the Ul classes to talk to the backend as needed. In addition to the Sweet Ser vl et , the O i ent Sweet Pro
xy talks to a Mbdel Ser vi ce in order to fetch ontology information that certain front-end operations require. In a few cases, the i ent Sweet Pr oxy
makes multiple server calls for a single user operation, in order to be sure to have the most up-to-date data. Examples include claiming (where first the
proxy verifies that the resource is not out of date), and sharing, which re-fetches the instance after a successful share. For now, creating a new instance
forces the workflow state to Draft, so that the instance has a valid workflow state; the alternative is to re-fetch the instance (or instances, when creating a
resource also creates stub resources).

ApplicationState and how the front end redraws

Appl i cati onSt at e object is a central (singleton) location for various general bits of information the SWEET webapp needs. It tracks several selections a
user has (or has not) made, and allows the Ul to fetch and draw the correct information. It holds a list of resource-providing organizations fetched from the
repository, as well as a cache of the El O asses that are known to be embedded and those that are associated with labs (and other resource-creating
organizations) and those visible for overall browsing. It's also where the client caches class definitions for use in tooltips.

The core of Appl i cati onSt at e' s behavior is in the Quer yTokenObj ect .Through the Quer yTokenObj ect , the Appl i cat i onSt at e handles history
navigation, browser refreshes, session timeouts, and bookmark sharing. The Quer yTokenCbj ect converts between a #history url string and specific El E
ntities (and a few other settings) to determine what will be drawn. The Quer yTokenCbj ect handles certain rules (whenever you start showing lists of
resources, reset the pagination to the default), and maintains:

® some entities for use by the other front-end classes (type entity, instance entity)
® amap from keys to values for going back and forth to the url history string ("mode", "typeUri", etc). The entities must be built out of two entries in
the map; for each entity, uri and label are stored separately.

The Appl i cati onSt at e maintains a list of Appl i cat i onSt at eChangeLi st ener s; whenever it gets an update that should change the history, it
updates the Quer yTokenObj ect , then writes QTO. t oSt ri ng() into the GWT history mechanism and notifies its listeners. Bookmarks and browser

refreshes work by first parsing the #history component of the url into the Appl i cati onState's QueryTokenObj ect, and then treating it as an Appl i c
ationSt at eChange event.

Single-resource (in this case lab) view:

eagl e -i at w University of Alaska

WHIVERSITY 5r Fairbanks
consortium LASK
FAaiRBAHEKS
Home Glossary Help = Change Password
E 1 0
= r
] Animal Quarters [o
(=] | g
B Core Laboratory :
awitch organizations
Duplicate
] All Resource Types -
= Biological add new
Spacimen Organization Animal Cuarters Cone Laboratory
Hurman Stuicy add new || Mame”
Instrument add new || Organization Core Laboratory
Organism or Virus add new || TPe"
Protocol add new Organization “Animal Quarters (AQ) provides safe and sanitany facilities for animal research
Reagent add new || Pescription projects in accordance with the Animal Welfare Act, Public Health Service Palicy,

2 i Natienal Institutes of Health Guidelines for the Care and Use of Laboratory Animals
Resaarch add new and the UAF Institutional Animal Care and Use Committee. Housed animals include
Cpportunity arctic ground squirreds, laboratory mice, red-backed voles, syrian hamsters,
Service add new Amencan widgeon, northern shovelers, Iesser SCaup, greater Scaup, northern pintall,
Saftwars add new green-winged teal, zebrafish, sticklebacks, betias, and biack bears.”

LeftListPane Contact Jack, Jason
Pl Drenwl, Kally

Listing a particular type of resources for a specific lab:

~ University of Alaska
ETNE:: Fairbanks
Home Glossary Help ~ Change Password
Walcome, ray [Logout]
Animal Quarters
Core Laboratory | | Filerby | nopanism or vines Gy = StEtuss (4 !
switch organizations || s
All Resource Types b
Biological add new| | ; v
Specimen Organism or Virus
Human Study addnewll | . s - T Famtimne Bl
Rt et ST | i e R T ResourcesGrid Actions ~|
Organizm or Virus add new e Name B Date Added ™ Status O
Protocol add new
Reagent add new| | Wild arctic ground squirrel Spermophilus 2010-07-30 Published
Research add new| | Animal Quarters Core parryii
Opportunity Labaratary
Sarvice add new| | Wild American black bear Ursus 2010-07-30 Published
Software add naw Mmaaf[g;aners Core americanus
LeftiListPanal Wild three-spined Gasterosteus 2010-07-30 Published
stickleback aculeatus
Animal Quarters Core
Labaratary
Wild muskox Owvibos 2010-07-30 Published
Animal Quarters Core moschatus Contents set by MainControlle
Lhatrieatig

Three classes implement Appl i cati onSt at eChangelLi st ener: the Mai nControl | er, the Left Li st Panel , and the {{BreadcrunbW dget.

BreadCrumbWidget
The Br eadcr unbW dget displays a trail of resource provider (if any) and resource type selected (if any), with an initial link back to the workbench always.

LeftListPanel

The Lef t Li st Panel is responsible for displaying the current resource providing organization (lab, division, etc), and a list of available resource types.The
Left Li st Panel has two modes: when a lab or other resource provider is selected, and when the user is instead browsing people and resources. Its two
modes are shown below.

'Browse Resources

All Resource Types

- Animal Quarters
Q Biological Specimen

Core Laboratory

switch organizations Document
- Human Study
All Resource Types
. . Instrument
Biological add new , ,
Specimen Organism or Virus
Human Study add new Protocol
Instrument add new Reagent _
Organism or Virus add new Research Opportunity
Protocol add new Service
Reagent add new Software
Research add new Browse People and
RACRLnTy Organizations
Gt AOC DI Person
A add new Organization
Lab (or other resource provider) selected Browsing people and resources

When the user has selected a lab (above left), the selection is stored in the Appl i cati onSt at e.The Lef t Li st Panel then retrieves the selected lab
from the Appl i cat i onSt at e, and displays the top-level types from the Appl i cati onSt at e's r esour ceTypesFor Provi der list. When there's no lab
selected (above right), the Appl i cat i onSt at e instead uses r esour ceTypesFor Br owse.In either case, if the Appl i cati onState'stypeEntity is
populated, the Lef t Li st Panel highlights the selected resource type (Protocol in above left); otherwise, it selects the "All Resource Types" entry{ (above
right)

MainController

The Mai nCont rol | er uses the Mbde (an enum from Quer yTokenObj ect) from the Appl i cati onSt at e to determine what belongs in the main area
of the window. Whenever the application state updates, the Mai nCont r ol | er checks first for a valid user (if there's none, it clears everything), and then
checks the mode.

The possible modes are broken down into three sub-groups: workbench, editing/viewing single resources and listing resources.
The workbench group contains only one mode that shows a landing page (Workbench).

® WORKBENCH: shows a landing page with a number of standard options. For other application domains, it will probably make sense to create a
new Workbench class for this mode to invoke.

-
eag | e-l at w Univversity of Alaska

YRIVEREITY OF Ehirhanks

5K
AH

COREDFLiwm L
I

raime KES

Home Glossary Help = Change Password

g Workioench Welcome, auralar [Logoul]
=
g Work With My Qrganizations
= select an arganazation =
o ’
=]
Browse Browse Peaple & Create an
Iy Institution Institution
’
Linifinished Tasks
.

AbewtUs | Cortest | Terns of Uss | weweaghe-lang Making Invisible Resources Visible

e e e | Corel=ilin m e Supported Loy SIH Geanm a5U0LAANMD X2

Editing/Viewing single resources contains three modes:

EDIT: edit a single resource; show the edit form (including all possible properties as supplied by the domain ontology)

® VIEW: shows all the properties of a single resource, but only those that have been annotated by a user. In other words, all the *actual* properties

(including the properties not shown in search) but not the *potential properties shown in EDIT mode.

DUPLICATE: placeholder mode; application state change should *not* be invoked for this mode. Show an edit form with a new instance,
populated from the values of an existing instance. Clears the label field, to force users to add a new label.

Listing resources contains seven modes, which are differentiated based on having certain criteria met:

LIST: list all resources meeting the criteria (including the filter criteria) from the Appl i cati onState. IfatypeEntity exists, show only
resources with that as a base type (otherwise, show all resources). If a pr ovi der Ent i t y exists, show only resources belonging to that lab (or
other resource provider). The Appl i cati onSt at e is set to this mode by the Lef t Li st G'i dRowW dget , or after a resource has been deleted.
FILTER: the Appl i cat i onSt at e mode used when the user clicks the "go" button in the Fi | t er Panel . Shows only resources meeting the
description from the Appl i cat i onSt at e, further refined by the Fi | t er Panel options (resources belonging to a subclass, only resources in
Draft mode, etc).

RESOURCES: a (hackish) way to get an empty resources grid shown. In highly-populated repositories, trying to show all resources of all types
from all labs is prohibitively slow. Resources mode short-circuits the process.

REFERENCES: List all the resources that refer to the i nst anceEnt i ty from the Appl i cati onSt at e. Resource A refers to resource B if
resource B is the value of a some property on resource A. (In rdf-speak, we're looking for all the subjects A where B is the predicate for some
statement about A, and A is an instance of one of the types we consider as eagle-i resources.)

STUBS: List all the resources that were created through a "create new" mechanism in the edit form.

PROVIDERS: Shows a list of all organizations to which resources can or should be added. [Note: currently broken--shows all organizations]
MYRESOURCES: Show exactly the resources for which the current user is the editor/has claimed the resource.

For any of the modes that involve listing resources, the Mai nCont r ol | er clears its panel, fetches any relevant resources in the form of a list of El | nst an
ceM ni mal , and draws a Resour cesGri d. For the edit, view, and duplicate modes, it clears its panel and invokes the For nsPanel Fact ory to fetch the
appropriate resource (and possibly ontology model information) and draw the page.

ResourcesGrid

For any mode in the listing resources group, the Mai nCont r ol | er retrieves a list of El | nst anceM ni nal s, and then draws a Resour cesGi d. The Re
sour cesGri d is responsible for drawing lists of resources, of whatever sort. The Resour cesGri d has a Fi | t er Panel at the top, which allows filtering
the list by any combination of subtype, current owner (claimed by user, or all), and workflow state. It also has two Pagi nat i onW dget s (one at the top
and one at the bottom), which determine how many resources to show per page and which page to view.Note that no total counts are available (and page
sizes may be slightly off) because a single resource may be returned multiple times from the repository, but is filtered out at the front end.

The Resour cesGr i d displays a list of G- i dRowW dget , each of which wraps an El | nst anceM ni mal .The G i dRowW dget displays relevant
information from the El | nst anceM ni nal , and provides links to allow the user to claim or share the resource (if it's in a workflow state that the user can
change), and to edit or delete it once it's been claimed. The Gri dRowW dget also has a checkbox which interacts with the Resour cesGri d's actions
drop-down to allow bulk workflow transitions.

Displaying and editing single resources

Panels for editing and viewing single resources are constructed by the For nsPanel Fact or y, which is responsible for fetching the instance (or getting a
new, empty instance) and constructing a Dat at ool sl nst ancePanel to display it.

Much of the instance display logic is shared with the eagle-i search applications, so the base Renderer interface, the abstract Ont ol ogyPr operti esRend
er er, and the abstract | nst ancePanel are all found in or g. eagl ei . ui . gwt . i nst ance.

The InstancePanel heirarchy:

InstancePanel (org.eaglei.ui.gwt.instance)
contains
" instance: Ellnstance

* ontologyFanel: where to draw properties
from the ontology

* nonOntology OuterPanel: where to draw
other properties

* OntologyPropertiesRenderer
* other Renderer (in case needed)

*

DatatoolsinstancePanel (org.eaglei ui gwt.
sweet.instance)
adds
* ButtonsPanel
* FormRedisplay (what to do after a user
duplicates or promotes the resource)

________,__.——-—H—-——..._,__________

InstanceViewPanel (org.eaglei ui.gwt sweet.

InstanceEditPanel (org.eaglei ui.gwt.sweet. instance)
instance)

For viewing a resource in a SWEET context,

For editing a resource with full contact details and workflow state
information

The Renderer heirarchy:

Renderer:
renderProperties()

OntologyPropertiesRenderer: NonOntologyPropertiesRenderer
eilnstance, eiClass, rootSuperClass . eilnstance
Draw domain ontology properties in the Draw properties found on the
order specified by the application instance but not specified in the
ontology. domain ontology.

Subclasses specify exactly
how to draw an object property
or a datatype property.
SearchOntologyPropViewRend MaterializedInversePropRenderer:

erer,. eilnstance
OntologyPropEditRenderer

OntologyPropViewRenderer

The job of an Ont ol ogyPr operti esRender er is to draw the properties specified for the instance by its type in the domain ontology. It draws them in an
order specified by the application ontology. Specific subclasses are responsible for picking exactly how to draw the properties--as labels, as links, or as
widgets for editing.

The NonOnt ol ogyProperti esRender er draws properties found on the given instance but not specified in the domain ontology. Important examples
are the workflow owner and workflow state, creation and modification dates, and the like. The eagle-i application ontology also specifies comments and
curator notes for each resource; these are also non-ontology properties.

The Ont ol ogyPr opVi ewRender er is the ontology renderer for viewing resources in a datatools context. It creates a Label Val uesW dget for each
property that actually has a value on the instance.

The Ont ol ogyPr opEdi t Render er is the ontology renderer for editing resources in a datatools context. Since it needs to present all possible properties,
it loads the properties from the El Ont Model as well as the values that currently exist on the instance (if any). The Ont ol ogyPr opEdi t Render er draws
widgets that are subclasses of Edi t W dget (usually wrapped in Edi t W dget Col | ecti ons).

EditWidget and EditWidgetCollection

As previously mentioned, the values for a given property of an El | nst ance is (generally) a set of values (collection that is unordered and for which each
value must be unique). As a result, when the user changes a value using an edit form, there needs to be a mechanism for tracking which value is being
replaced.The Edi t W dget hierarchy performs that function.

The base Edi t W dget class holds a reference to the El | nst ance it is editing, the El Pr oper t y for which it is the widget, and, crucially, an ol dVal ue
field. Since properties can be either objects (El URI }}s) or data types (strings, bool eans, dates, etc), the {{ol dVal ueis a string; if
the property is an object property, the subclass must use get O dEI URI value to get the correct ol dVal ue.

Whenever its value field changes, the subclass is responsible for removing the old value (if any) from the El | nst ance and setting ol dVal ue to the
current value. Ideally, Edi t W dget would be responsible for this behavior in just one place, but only the subclass has the context to determine if the old
value will be found in ontology properties or non-ontology properties, object or datatype. Thus, the first abstract method of Edi t W dget is r enpbveVal ue.

The other abstract method of Edi t W dget is dupl i cat eBl ank, which is needed by the Edi t W dget Col | ecti on.

The SWEET handles multiple values for a property through the Edi t W dget Col | ecti on. The Edi t W dget Col | ect i on holds a list of Edi t W dget s,
plus the El | nst ance and the El Proper ty that all the widgets in its collection edit. The Edi t W dget Col | ect i on is responsible for adding a new Edi t
W dget of the same type as the previous widget in its list, using the dupl i cat eBl ank method on that Edi t W dget .It can also remove a value (the ™'
link) by calling the relevant Edi t W dget 's r enbveVal ue method.Again, because the values of an El | nst ance's property are a set, if two Edi t W dget s
in the same Edi t W dget Col | ect i on are ever set to the same value, changing or removing one will change or remove the value from the El | nst ance
entirely. A desirable extension to Edi t W dget s or Edi t W dget Col | ect i on would be to prevent a user from ever selecting duplicate values for the
same property.

The subclasses of Edi t W dget include:

® Text W dget : a simple widget for datatype values; property value goes in a text box

® Text AreaW dget : a widget for longer datatype values; property value goes in a text area

®* Ter mW dget : a widget for displaying and selecting domain ontology terms; values are constrained to valid values from the domain ontology
(usually subtypes of a specified type)

® Resourceli st W dget : a selection widget for legal values from the repository. Also allows a "create new" option. Selecting the "create new"
option inserts a StubWidget under the Resour ceLi st W dget . By default, a Resour ceLi st W dget is populated only with resources of the
appropriate type from the current lab; the "See choices from all organizations" link queries for all the resources of that type in the repository.

® St ubW dget : a widget with label and type fields. Only drawn when the user has selected "create new" from a Resour ceLi st W dget . Creates a
new stub instance with the specified label and type; all stubs are saved as part of saving the main instance. (First the stubs are saved; once the
first save has succeeded, the main instance is saved.)

® (bj ect W dget : a complex widget to allow the user to select a value properly among several allowed ranges (essentially, types).See below.

* EnbeddedResour ceEdi t W dget : a widget to draw any embedded instances in the current El | nst ance.

The Obj ect W dget handles properties that have multiple valid ranges for their values. For example, the Manufacturer property of an Instrument can be
either a Person or an Organization; in order to see the correct values, the user must first select which. Then the Obj ect W dget adds a Resour ceLi st W
dget populated with the instances of that type.

A more complex case is the Topic of a Protocol. It can be an Organism or Virus, a Disease, or a Biological Process. The Biological Process and Disease
ranges are both types from the domain ontology; when the user selects one of them, they need to see a Ter MW dget . An Organism or Virus range,
however, is an instance range--the user needs to see a Resour ceLi st W dget with all the relevant organisms and viruses.

	SWEET Developers' Guide

