
Data Management Toolkit
Introduction
Whether via the SWEET or via ETL, data in eagle-i is always produced in conformance to the eagle-i ontology that is current at the time of entering the
data. It is not uncommon, however, for the ontology to evolve in such a way that some data triples become unnecessary or incorrect. In addition to data
migration, it is sometimes necessary to perform low-level data manipulations that are not currently supported by the SWEET UI -- for example, bulk
modification of property values according to a regular expression substitution.

The data management toolkit provides system administrators with powerful tools to modify data at the triple level. It requires understanding of RDF and
familiarity with the eagle-i ontology.

The toolkit is comprised of a series of Java utilities that are invoked from the command line, and is packaged as a jar file that must be present in the
environment where the commands are executed. Only users with administrator privileges can issue data management commands; they should be always
tested before applying in a production environment, as they bypass regular data validity controls and may result in non-conformant data.

Data migration as a result of ontology changes
Upon ontology changes, the eagle-i ontology team produces three migration tables that are packaged with the ontology release; they contain the changes
that were made to the ontology since the previous ontology release, grouped by data element where the changed occurred: ontology classes, ontology
predicates and ontology individuals.

An ontology release is in turn packaged with a general eagle-i software release. As part of the software upgrade procedure, the eagle-i node system
administrator must run the script, which results in the necessary data changes being performed to reflect the new ontology. data-migration.sh
Internally, this script invokes various data management commands according to the requirements of the particular ontology release (typically only ChangeO

 and are invoked). Hence, in the general case, a system administrator need not worry about executing individual commands.bject ChangePredicate

If a system administrator upgrades to a non-contiguous release (e.g. from 1.7MS1 to 1.7MS4), applying the regular data migration procedure would miss
some of the necessary data changes. The eagle-i team can produce a zip file with cumulative data migration tables (currently upon request). To apply the
cumulative tables, the directory where this zip is expanded needs to be provided as a parameter to the data migration script, for example:

sh ${REPO_HOME}/etc/data-migration.sh adminUser adminPassword https://your.host.edu migration-tables-since-1.7
MS1

Data management commands
Data management commands are found in the java package:

org.eaglei.datatools.datamanagement.command

The Javadocs linked above provide more details on each command.

From a terminal window, commands may be invoked as:

java -cp ./eagle-i-datamanagement.jar org.eaglei.datatools.datamanagement.command.[Command] [parameters]

Issue the command without parameters to print a help message.

A few parameters are common to all commands:

-c admin credentials, in the form username:password

-r repository base URL, e.g. https://your.host.edu

-t optional URI of an RDF:type restriction, i.e. only apply changes to resources where RDF:type is the provided URI

Considerations

http://search.eagle-i.net/javadoc/org/eaglei/datatools/datamanagement/command/package-summary.html
https://your.host.edu

The commands in the data management toolkit make use of the service to delete and upload entire RDF graphs obtained via repository/graph const
 queries. Since the changes don't go through the regular CRUD interface, they do not result in metadata changes for the resource (e.g last modified ruct

date or contributor). Some commands add a comment explaining what was done (prepended with the name OTTO KURATOR, so it is easy to SPARQL
them), but most commands don't. A detailed log of changes is produced with each run, which contains the old triples (deleted) and the new triples (added).
If a command was applied erroneously, it is sometimes possible to reverse it by looking at the logs, reintroducing the old triples and deleting the new
triples. If the command is based on a translation table, it is also possible to re-apply it with a reversed translation table.

All commands are idempotent - they may be applied repeatedly without consequences.

Finally, because most commands do not update resource metadata, the changes will not be reported by , and will therefore not be repository/harvest
visible in the search API. It is therefore necessary to perform a clean search re-indexing and sparqler synchronization after data management commands

. are executed This is yet another reason for using them sparsely.

	Data Management Toolkit

