
Configuration Property Guide
Contents

SWEET
Central Search
Search (Central and Node)
SWEET & Search (node and central)
SWEET, Search (Node and Central) and Glossary
SPARQLER

This guide describes the configuration properties for the eagle-i sweet and search applications, and the public sparql endpoint that may be installed
alongside the repository. This document is broken up into several sections. Properties are grouped by application; shared properties form a separate
group. Each group lists the required properties and optional properties separately. Required properties must be set in order for the application to function.

The default name for the property file to use is which lives in the eagle-i configuration directory, e.g. eagle-i-apps.properties /opt/eaglei/conf

There are some properties which are listed in . These properties contain sensitive information, such as credentials to the repositories. We recommend red
that you place these properties in a separate file and place the file in a directory that is only accessible to eagle-i-apps-credentials.properties
to to further protect the credentials, e.g. ROOT /opt/eaglei/.config

SWEET
In addition to the properties below, which are specific to the SWEET application, there are additional properties, both required and optional, that are shared
with other applications listed and .here here

Required Properties

eaglei.datatools.repository.url
The base-url of the eagle-i repository against which the SWEET runs. This property needs to be provided even if the SWEET runs in the same
server as the repository

 NoneDefault:
 be an HTTPS end-point, since the SWEET back-end uses HTTP basic authentication. be usedRequirements: MUST localhost cannot

Example: https://somenode.eaglei.net
eaglei.ui.centralSearch.url
The full url for the central search application. This property is used to set the links in the menu of the SWEET application
Default: http://search.eagle-i.net/central

 NoneRequirements:
Example: http://search.eagle-i.net/central
eaglei.catalyst.user
A repository user that has anonymous access. This user is used for the SWEET webservices. If you would like to expose contact information to
the webservices user, add this user to the via the repository's administrative panel.Contact Properties ACL

 NoneDefault:
 Valid repository usernameRequirements:

 Example: specialRepoUser

eaglei.catalyst.password
The corresponding password for the above mentioned user.

 NoneDefault:
 Valid passwordRequirements:

 Example: specialRepoPW

Optional Properties

Global Data Repository
If you would like to use a repository to store instances that are global (in programming parlance), you will need to set the following properties in all
SWEET applications that will be using the global repository to supply the global information.

 that if your global repository will be hosted in the same Tomcat that is also serving a central search application, you will need to Please note also
follow the optional properties instructions for a central search application to co-exist with a SWEET application.

eaglei.datatools.uses.globals
True if the SWEET application is supposed to also be gathering information from a global repository.

 FalseDefault:
 Boolean valueRequirements:

eaglei.datatools.globalRepository.url
The full url for where the global data repository resides.

 NoneDefault:
 NoneRequirements:

Example: https://global.eagle-i.net
eaglei.datatools.globalPolling.frequency
The number component of the frequency at which SWEET should poll the global data repository for updated information.

 24Default:
 Integer valueRequirements:

eaglei.datatools.globalPolling.unit
The time unit component of the frequency at which SWEET should poll the global repository for updated information.

 HOURSDefault:
 be a , i.e. DAYS, HOURS, MINUTES, SECONDS, MILLISECONDS, Requirements: MUST java.util.concurrent.TimeUnit

MICROSECONDS, NANOSECONDS
eaglei.datatools.globals.user
The global repository username for the automated harvesting of data from the global repository to the local proxy graph for storing the
global information, which is then used by the sweet application. This user needs to have , and access to the add remove read NG_Globa

 graph on the client repository, where the client repository is where the local sweet application uses as it's home repository. This lProxy
user needs to have access to the on the global repository.read Default Workspace

 NoneDefault:
 Valid repository user on both the client and global repository. The username match in both repositories.Requirements: must

 Example: globalUser
eaglei.datatools.globals.password
The password for the user specified by .eaglei.datatools.globals.user

 NoneDefault:
 Valid repository password for the user on both the client and global repository. The password match in both Requirements: must

repositories.
 Example: globalPassword

Central Search
The following properties to a central installation of the search application. Be sure to also look at the additional properties, both required and optional, only
that are common to both installations of search and also those that are shared with other applications listed and .here here here

Required Properties

eaglei.search.is.central
Indicates the type of search application installation. A value of true indicates the search application is a central search, false a node search
application.

 FalseDefault:
 Boolean valueRequirements:

eaglei.noderegistry.url
The fully qualified URL to where the node registry service exists. This is used to inform the central search application as to what nodes it needs to
harvest and index for searching.

 NoneDefault:
 A resolvable URLRequirements:

Example: http://search.eagle-i.net/node-registry

Optional Properties

eaglei.search.harvester.polling
The time period, in milliseconds, for the central search to perform a harvesting operation.

 30000Default:
 Integer valueRequirements:

Global Repository
If you would like to use a global repository to store instances that are global (in programming parlance), your global repository will be hosted and
in the same Tomcat that is also serving a central search application, you will need to define the following properties for the sweet application also
to co-exist with central search.

eaglei.datatools.central.coexist
Indicates whether or not a sweet application will be co-existing in the same tomcat as a central application.

 FALSEDefault:
 Boolean valueRequirements:

eaglei.datatools.central.coexist.filename
The name of the secondary non-credentialed property file that contains the properties for the sweet application.

 NoneDefault:
 A fully qualified filenameRequirements:

eaglei.identity.url
If login is required for the application, the location of where the identity service exists be specified here.must

 NoneDefault:
 A fully qualified URLRequirements:

Example: https://search.eagle-i.net/eagle-i-webapp-idenity-service/identity

Search (Central and Node)
The following properties apply to both a central and a node installation of the search application. Be sure to also look at the additional properties that are
shared with other applications listed and .here here

Required Properties

None

http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/TimeUnit.html

Optional Properties

eaglei.search.requires.login
Indicates whether or not the search application requires a login. In the case of a node search application, login is performed by querying the
underlying repository's whoami graph. Currently, in the case of a central application will require a functional instance of the identity-service. Login
for the central application will be done using the identity-service authentication.

 TrueDefault:
 Boolean valueRequirements:

eaglei.search.logout.url
If login is required for the search application, this property can be used to set where the user should be redirected to upon logging out of the
application.

 NoneDefault:
 A resolvable URLRequirements:

Example: http://www.eagle-i.net
eaglei.dev.mode
For developers to experiment with certain features that are not ready for production. To be used in conjunction with code that references SearchA

.pplicationContext.getInstance().isDevMode()
_Default:_False

 Boolean valueRequirements:
Search Usage Database Module
If you would like to make use of the asynchronous logger to have more specific search logs.

eaglei.logger.jdbc
The prefix to the connection url for the underlying database to specify the type of connector and database. Be sure to the trailing include
double slashes. For example: .jdbc:mysql://

 NoneDefault:
 Valid prefix in the form of: Requirements: jdbc:database type://

 Example: jdbc:mysql://
eaglei.logger.host
The hostname for the database where the asynchronous logger should send log messages to, including any port number.

 NoneDefault:
 Valid hostname and a port number, if applicable, in the form of: or , where 1234 is the port Requirements: hostname hostname:1234

number for accessing the database.
 Example: somehostname:1234 or hostname

eaglei.logger.database
The name of the database to connect to, which will be where the asynchronous logger writes the log messages to.

 NoneDefault:
 A valid database that has been configured per the instructions for the asynchronous logger module.Requirements:

 Example: searchLogDB
eaglei.logger.database.user
Username to use for connecting to the database used by the asynchronous logger. This user must have the requisite permissions for
writing to the database.

 NoneDefault:
 A valid user with the correct permissionsRequirements:

 Example: dbUser
eaglei.logger.database.password
Password for the above mentioned username.

 NoneDefault:
 A valid password for the user.Requirements:

 Example: dbpassword

SWEET & Search (node and central)
The following properties apply to SWEET as well as both the node and central installation of the search application.

Required Properties

eaglei.model.url
The full url for the model service that provides ontology term suggestion lists and access to the model class information.

 NoneDefault:
 NoneRequirements:

Example: https://search.eagle-i.net/model

Optional Properties

eaglei.connection.acceptAllCerts
This allows self signed certificates in development and test environments, for http communications that are programatically handled (e.g. between
sweet/search and repo).

 set this to true in a production environment: it presents a security risk.DO NOT
 falseDefault:

 NoneRequirements:
Google analaytics
If you are using google analytics to track page views, set the following property.

eaglei.ui.analyticsId
The google analytics ID used for tracking page views.

 NoneDefault:

#

 Valid google analytics IDRequirements:
 Example: asdf1234

SWEET, Search (Node and Central) and Glossary

Required Properties

Feedback Module
Feedback mechanism that allows users of the SWEET, Search and Glossary applications to provide feedback about their use to you and your
developers. We have parameterized these properties to allow to you to use either JIRA for tracking the issues or have an email sent.

eaglei.feedback.method
Specify which method to use for submitting feedback. Be sure to set the corresponding required properties depending on which method
you are using.

 jiraDefault:
 Must be either 'jira' or 'email'Requirements:

eaglei.feedback.jira.url TODO - rename to non Jira-specific
If you are using JIRA, this will be the full url for connecting to JIRA.
If you would like to have emails sent, this will be the full hostname for sending the email.

 NoneDefault:
 A valid url, including any port information needed to connect to the issue client. A valid hostname needed to send the Requirements: OR

email.
Example:http://jira.eagle-i.net:8080/rpc/soap/jirasoapservice-v2

Feedback Module (Jira)
eaglei.feedback.jira.user
If the method for submitting feedback is , this is the corresponding JIRA user that will be used for the submission. If the method JIRA
selected is , this is the user for sending the email.EMAIL

 NoneDefault:
 A valid JIRA User or EMAIL User.Requirements:

eaglei.feedback.jira.password
The password for the above mentioned user.

 NoneDefault:
 A valid password for the JIRA User or EMAIL UserFeedback Module (EMAIL)Requirements:

The following properties are required for a functioning feedback mechanism using email. In order to use this method, be sure to set the optional
property specifying the method to use. If you choose to use the default JIRA method for submitting feedback, you do not need to use any of the
following properties.

eaglei.feedback.email.from
The email to use as the from address of the email. This email will also be used in the even the email message is bounced.

 NoneDefault:
 A valid email addressRequirements:

 Example: email@from.me
eaglei.feedback.email.to
The email where the feedback should be sent to.

 NoneDefault:
 A valid email addressRequirements:

 Example: email@to.you

Optional Properties

Feedback Module (Jira)
eaglei.feedback.jira.projectKey
The key for the JIRA project to use for the issues submitted by the feedback module.

 FBKDefault:
 NoneRequirements:

Feedback Module (EMAIL)
The following properties are required for a functioning feedback mechanism using email. In order to use this method, be sure to set the optional
property specifying the method to use. If you choose to use the default JIRA method for submitting feedback, you do not need to use any of the
following properties.

eaglei.feedback.email.port
The port to use for sending the email.

 25Default:
 Valid port for sending the email.Requirements:

eaglei.feedback.email.ssl
Indicates whether or not SSL should be used for sending the email.

 falseDefault:
 boolean valueRequirements:

SPARQLER
A Public SPARQL Endpoint (aka "sparqler") may be installed, but is not required. If it is to be installed, certain properties must be set, and others may be
set. The sparqler is a repository containing the public data (and meta-data) copied from a (non-public) repository (its source-repository). The sparqler is
kept in sync with its source-repository by copying all updates (among the public data) from the source-repository to the target sparqler-repository. The
properties (if set) are found in three different files.

Required Properties

These properties provide the synchronization program access to source repository and its target sparqler repository. In a normal installation, the two
repositories run on the same node, indeed, within the same web-server (tomcat). For security reasons it is not recommended for the same user-
credentials to be used for both source-repository and sparqler.

In file :eagle-i-apps.properties

eaglei.sparqler.source.URL
The base-url of the eagle-i repository against which the data tools runs. This property needs to be provided even if the data tools back-end runs
in the same server as the repository

 None Default:
 be the base-url of the source repository. Must use protocol HTTPS, since privileged access is required to the source Requirements: Must

repository. localhost be usedcannot
Example: https://myRepository.net/
eaglei.sparqler.target.URL
Specifies the path to the target (sparqler) repository, which is to mirror the source repository.

 NoneDefault:
 be the base-url of the target (sparqler) repository. Must use protocol HTTPS, since privileged access is required to the target Requirements: Must

(sparqler) repository. localhost be usedcannot
 Example: https://mySparqlerRepository.net/sparqler/

eaglei.sparqler.lastSynchronizedDateFile
The local path to the file in which the timestamp of the most recently synchronized data is stored.

 Example: /opt/eaglei/eagle-i-sparqler.last-sync-date.properties
 the tomcat-user have permission to write to this file (and to create it if it does not yet exist).Requirements: must

In file :eagle-i-apps-credentials.properties

eaglei.sparqler.source.user
The user-name under which the synchronizer obtains data from the source repository.

 None Default:
 the named user must have sufficient access to use the "harvest" and "sparql" requests.Requirements:

 Example: myUserName

eaglei.sparqler.source.password
The password to be used with the user-name under which the synchronizer obtains data from the source repository.

 None Default:
 noneRequirements:

 Example: myPassword

eaglei.sparqler.target.user
The user-name under which the synchronizer adds data to or removes data from the target sparqler repository.

 None Default:
 the named user must have sufficient access to use the "graph" request.Requirements:

 Example: mySparqlerUserName

eaglei.sparqler.target.password
The password to be used with the user-name under which the synchronizer adds data to or removes data from the target sparqler repository.

 None Default:
 None.Requirements:

 Example: mySparqlerPassword

Optional Properties

In file :eagle-i-apps.properties

eaglei.sparqler.syncData.captureFile
Used for test- and debugging-purposes only. The base local path to files in which the data harvested from the source-repository, the data added
to, and the data deleeted from the sparwqler repository.

 None. If unset, no data is dumped to a file. Default:
 None.Requirements:

 Example: /opt/eaglei/data/syncCapture

Optional Properties governing scheduling of synchronization

The sparqler webapp automatically synchronizes itself with its source-repository on a regular schedule. Various properties may be set in repository's
home-directory's configuration.properties file to modify the default behaviour of the scheduling.

At repository startup, the sparqler waits until both itself and its source-repository are up and running, and then sets a repeating timer to run the
synchronizer at regular intervals.

eaglei.sparqler.sync.repeat-period
The time in minutes between starting runs of the synchronizer.

 1440 (i.e. 24 hours) Default:
 None.Requirements:

eaglei.sparqler.sync.mgr.repositories-timeout
The initial time in minutes the synchronizer is to wait if repositories are not yet available at startup. After the wait, if they are still not available, the
wait-time is doubled, and so on, for the specified number of times. The maximum wait time is therefore ((waitTime * 2^^numTries) - 1) minutes.

 1 Default:
 None.Requirements:

eaglei.sparqler.sync.mgr.repositories-num-tries
The maximum number of times to try to contact the source- and target-repositories (see preceding property).

 2 Default:
 None.Requirements:

eaglei.sparqler.sync.mgr.stop-wait
At shutdown, the maximum time (in minutes) to wait for the synchronizer timer to shut down gently before resorting to killing the thread.

 2 Default:
 None.Requirements:

	Configuration Property Guide

