
SHRINE 4.1.0 Appendix A.8 - More Details: Using
Authorization with SSO

Core Authorization Configuration:

If you want to use you must first add the following configuration to after the existing shrine block , authorization , shrine.conf :

shrine {

...

}
...
shrine.config.authorizer.requireAuthorization = "true"
shrine.webclient.ssoLogoutUrl = "https://<your hostname>/shrine-api/authorizer/logout"
shrine.config.authorizer.shibLogoutUrl = "https://<your hostname>/Shibboleth.sso/Logout?return=<return URL
provided by your idP>"
// shrine.webclient.unauthorizedMessage = "Enter your message"

Unauthorized Message:

The default unauthorized message is as follows and currently baked into the code: "You currently do not have access to SHRINE. Please contact your
institution's SHRINE administrator for more information."

()Optional The unauthorized message can be tailored to your needs in by uncommenting and updating the message:shrine.conf

 // shrine.webclient.unauthorizedMessage = "Enter your message"

Authorization Logic Configuration:(Required)

Authorization has 2 phases:

Phase 1: Collecting "attributes" about the user. Note: the user is identified by the REMOTE_USER / userId header passed by the SP – See section A.
3

Phase 2: Making an authorization decision based on the attributes collected in Phase 1

The authorization system works with any number of individually configured () each of which can generate attributes. Further, Phase 1 attribute providers,
a single () , must also be configured. The authorization provider will determine, based on the collected attributes, whether Phase 2 authorization provider
the user is authorized or not.

NOTE: After the configuration items indicated above in the config file, we also need to add a configuration block called shrine.conf '
.shrine.config.authorizer'

The following configuration pattern is used to integrate attribute providers with the authorization
provider. The system currently comes with 3 available AttributeProviders and 3 available
Authorization Providers. However, the system can be configured with any number of
AttributeProviders but only one of the AuthorizationProvider should be configured and be used.

// Configuration for Phase 1 (attribute providers) and Phase 2 (one authorizer)
//
shrine.config.authorizer : {

 attributeProviders : // this example uses three attribute providers -- there must be a non-empty list
 [
 {...} // configuration for an available attribute provider
 {...} // configuration for an available attribute provider
 {...} // configuration for an available attribute provider
],
 authorizer : { // exactly one authorization provider must be configured
 ... // configuration for an available authorization provider
 }
}

The attribute providers will assemble attributes in a data structure with the following form: Each "attribute type"
corresponds to an AttributeProvider class. Each AttributeProvider class generates a list of "attributes", and each of the
attributes has a list of values. The authorizer class will use this data to decide whether to authorize the user or not.

// Structure of attribute-collection generated in Phase 1
* {
 * attribute type 1 -> {
 * attribute 1 -> [value 1, value 2, ...],
 * attribute 2 -> [value 1, value 2, ...],
 * ...
 * },
 * attribute type 2 -> {
 * attribute 1 -> [value 1, value 2, ...],
 * attribute 2 -> [value 1, value 2, ...],
 * ...
 * },
 * ...
 * }

Attribute Providers Configuration:

WhiteBlackListAttrProvider:

The WhiteBlackListAttrProvider queries a database's table of whitelisted and blacklisted users. Its typical configuration follows. It finds the user by looking
for the REMOTE_USER / userId passed by the SP.

 {
 class = net.shrine.authz.providerService.attributes.WhiteBlackListAttrProvider
 name = wb-list,
 // DB config here should correspond to tomcat's Resource in its context.xml, see below
 database: {
 dataSourceFrom = "JNDI"
 jndiDataSourceName = "java:comp/env/jdbc/blackWhiteTableDB"
 timeout = "30 seconds"
 createTablesOnStart = false
 }
 }

WhiteBlackList Context.xml Configuration

Note that the table and column names are not configurable. The db table must be named "bw_user" and the columns "ssoId", "whitelisted", and
"blacklisted". As configured above, the database name is "blackWhiteTableDB"; but it could be configured to another name. Also, the context.conf file in
the tomcat configuration must contain the following:

<Resource name="jdbc/blackWhiteTableDB" auth="Container" type="javax.sql.DataSource"
 maxTotal="128" maxIdle="32" maxWaitMillis="10000"
 username="shrine" password="<shrine-pw>" driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/blackWhiteTableDB?serverTimezone=UTC"
 testOnBorrow="true" validationQuery="SELECT 1"/>

The WhiteBlackListAttrProvider generates attributes of this shape:

 wb-list: -> {
 isBlack -> (true/false},
 isWhite -> (true/false}
 }

EndpointAttrProvider

An EndpointAttrProvider fetches data from a remote URL and extracts attributes from that data by using Regexes. In the example which follows it extracts
2 attributes, person_id and faculty_type:

 {
 class = net.shrine.authz.providerService.attributes.EndpointAttrProvider
 name = profiles_faculty_type_and_id
 url = ".....{userId}....."
 userIdPlaceHolder="{userId}" // the REMOTE_USER / userId will get substituted into the Url for this
placeholder
 attributeRegexes : [
 {
 name = "person-id"
 regex = "PersonID=\"([0-9]+)\""
 }
 {
 name = "faculty_type"
 regex = "<Affiliation Primary=\"true\">.*?FacultyTypeSort=\"(.)\""
 }
]
 }

The attributes generated by an EndpointAttrProvider as configured above will have this shape:

profiles_faculty_type_and_id -> {
 person-id: [...]
 faculty_type: [...]
}

One can re-use EndpointAttrProvider in the same configuration. For example, the same attribute provider class could be shrine.config.authorizer
configured as follows

 {
 class = net.shrine.authz.providerService.attributes.EndpointAttrProvider
 name = endpoint_everything
 url = ".....{userId}....."
 userIdPlaceHolder="{userId}" // the REMOTE_USER / userId will get substituted into the Url for this
placeholder
 attributeRegexes : [
 {
 name = "everything"
 regex = "(.+)"
 }
]
 }

The attributes generated by an EndpointAttrProvider as configured above will have this shape, where "everything" will contain the entire payload from the
call to the 3rd party end-point

endpoint_everything -> {
 everything: [...]
}

RequestHeadersAttrProvider

The RequestHeadersAttrProvider extracts values from HTTP request headers:

 {
 class = net.shrine.authz.providerService.attributes.RequestHeadersAttrProvider
 name = headers,
 headerNames :
 [
 AJP_userId
 AJP_email
 AJP_firstName
 AJP_lastName
]
 }

The attributes generated by RequestHeadersAttrProvider as configured above will have this shape:

headers -> {
 AJP_userId: [...]
 AJP_email: [...]
 AJP_firstName: [...]
 AJP_lastName: [...]
}

Authorization Providers Configuration:

HmsAuthorizer

The authorization provider, for example, HmsAuthorizer, makes use of the attributes generated by the attribute providers. Per the requirements for HMS,
HmsAuthorizer checks a 'Profiles' endpoint.

 // You are authorizied if and only if:
 // You are not black-listed
 // --and-- you are either white-listed or your faculty type is from 0 to 4 inclusive

 authorizer : {
 name : net.shrine.authz.providerService.authorize.HmsAuthorizer
 }

RegexAuthorizer

A more flexible authorization provider could be the RegexAuthorizer. It concatenates all the received attributes and values, and then applies any number of
Regexes to it. Authorization is granted if all regexes find a match. A "!" before a Regex means that there should not be a match.

 // Given the below regexTerms, you are authorizied if and only if:
 // You are not black-listed
 // --and-- you are either white-listed or your faculty type is from 0 to 4 inclusive
 // --and-- the string 'fp77' does not appear anywhere in your attributes

 authorizer : {
 name : net.shrine.authz.providerService.examples.RegexAuthorizer
 regexTerms :
 [
 "wb-list.isBlack.false"
 "(wb-list.isWhite.true)|(faculty_type_and_id.faculty_type.[0-4])"
 "!(fp77)"
]

 }

BWAuthorizer

With BWAuthorizer, authorization is granted if the user is white-listed and NOT black-listed.

 // You are authorizied if and only if you are white-listed but NOT black-listed

 authorizer : {
 name : net.shrine.authz.providerService.authorize.BWAuthorizer
 }

Next Step:

SHRINE 4.1.0 Appendix A.9 - Starting and Stopping the Software

https://open.catalyst.harvard.edu/wiki/display/SHRINE2020/SHRINE+4.1.0+Appendix+A.9+-+Starting+and+Stopping+the+Software

	SHRINE 4.1.0 Appendix A.8 - More Details: Using Authorization with SSO

