Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.

This page discusses SHRINE's networking requirements, which are valid for SHRINE versions 2.0.0 and later, and they apply to any SHRINE-based network such as ACT and LADR.  The discussion assumes an intermediate level of TCP/IP networking knowledge.


The following subsections summarize the networking requirements, which are organized by roles.  Please follow only the subsection that applies to your site.

For a downstream site connecting to a SHRINE hub:

  1. The downstream site must allow TCP traffic initiating from its tomcat process to reach the SHRINE hub, with the destination TCP port set to 6443.  From the perspective of the remote site, this traffic will be going outbound and maintained statefully.  The downstream site does not need to allow explicitly any reciprocal traffic from the hub back to the site, because the site and the hub will exchange all SHRINE-related application data using the single stateful TCP session that the remote site initiated.  Typically, most institutions allow unrestricted outbound Internet access; in most cases this policy should be sufficient.
  2. The downstream site must configure its firewalls and/or routers to allow users at the site to access its own SHRINE server, on the TCP port of its choice (the default is TCP port 6443).  Because of the wide variety of internal network configurations, it is not possible for us to anticipate all feasible permutations.  If in doubt, the remote site is strongly advised to check with its networking team for further details and confirm with ACT support before finalizing any networking decisions.

For a SHRINE hub accepting connections from downstream sites:

  1. The hub must allow TCP traffic from remote sites to reach its own SHRINE port (the default is TCP port 6443).  From the perspective of the hub, traffic coming from remote sites is considered inbound.  Each site will initiate its own TCP connection to the hub, and once the connection has been established, the hub and the site will use that single TCP connection to exchange all SHRINE-related application data.  Both the hub and the remote site will maintain that single connection for as along as SHRINE is running on both ends.  The hub does not use any other TCP connection to communicate with the site.  The hub administrator needs to exercise caution when configuring network access control, so that the integrity and security of the hub can be maintained.
  2. If the hub administrators intend for users to access the hub directly, then steps must be taken to grant user access to the hub's SHRINE application (the default is TCP port 6443).


Network Architecture for SHRINE

Starting with SHRINE 2.0.0, the topology of a SHRINE network is greatly simplified.  All that each remote site needs to do is to allow its SHRINE host to have access to TCP port 6443 of the hub.  Modern firewalls are typically "stateful" by design.  A stateful firewall is aware of the beginning, middle, and end of each connection (particularly TCP connections), and it will maintain each connection for as long as the endpoint application requires it.  SHRINE takes advantage of a single, stateful TCP connection that the remote site initiates to allow the site and the hub to exchange all SHRINE-specific data.  The remote site is no longer required to configure an "inbound" (from its perspective) firewall rule to accommodate any "reciprocal" network traffic from the hub.  Typically, many organizations allow unrestricted outbound Internet access for their hosts, and in such situations this policy is sufficient for the remote site.


  1. It greatly conserves the number of network connections required in any SHRINE network, and
  2. In the event of a network-layer problem, troubleshooting is made easier since there are fewer components involved.

Troubleshooting Connectivity Issues in a SHRINE Network

When troubleshooting connectivity issues, the site administrators must work with the hub to determine the status of network connectivity between the site and the hub.  One popular tool is tcptraceroute, which is available in CentOS Linux but can be found in other distributions as well.  The tool utilizes the basic principles of the traditional traceroute program but adapts it to work with TCP packets.  It sends out TCP packets that have the "SYN" flag enabled for increasing values of time-to-live (TTL) until one such packet reaches the destination, or TTL reaches its default limit of 30, whichever comes first.  Using tcptraceroute can determine the state of network connectivity between the remote site and the hub.