

““Write Once,Write Once,
Parallelize Anywhere”Parallelize Anywhere”

The Flow Programming Language:The Flow Programming Language:
An implicitly-parallelizing, programmer-safe languageAn implicitly-parallelizing, programmer-safe language

Luke Hutchison

Moore's LawMoore's Law

● The number of transistors that can be placed The number of transistors that can be placed
inexpensively on an integrated circuit has inexpensively on an integrated circuit has
doubled approximately every two years.doubled approximately every two years.

Moore's LawMoore's Law

● Computing is work; transistors do work; more transistors Computing is work; transistors do work; more transistors
working in parallel should yield faster computersworking in parallel should yield faster computers

● => => Moore's Law has (so far) also applied to Moore's Law has (so far) also applied to CPU speedCPU speed

● BUT now we're hitting multiple walls:BUT now we're hitting multiple walls:

● Transistor sizeTransistor size

– tunneling; lithography feature size vs. wavelengthtunneling; lithography feature size vs. wavelength
– no more 2D density increasesno more 2D density increases

● Thermal envelopeThermal envelope

– function of frequency and feature size =>function of frequency and feature size =>
we have hit a clockspeed wallwe have hit a clockspeed wall

● Data widthData width

– 128-bit CPUs? Need parallel control flow instead128-bit CPUs? Need parallel control flow instead

But it's worse than thatBut it's worse than that

It's not just the end of Moore's Law...It's not just the end of Moore's Law...

...it's the beginning of an era of ...it's the beginning of an era of buggier software.buggier software.

Humans will Humans will nevernever be good at be good at
writing multi-threaded code –writing multi-threaded code –

our brains simply don't work like that.our brains simply don't work like that.

(Abstractions like Futures only help a little bit.)(Abstractions like Futures only help a little bit.)

Parallel Programming ToolsetParallel Programming Toolset

● Traditional locks: mutex, semaphore etc.Traditional locks: mutex, semaphore etc.

● Libraries: java.lang.concurrentLibraries: java.lang.concurrent

● Message passing: MPI; Actor model (Erlang)Message passing: MPI; Actor model (Erlang)

● Futures, channels, STMFutures, channels, STM

● MapReduceMapReduce

● Array programmingArray programming

● Java7 ParallelArrayJava7 ParallelArray
● Intel Concurrent Collections (CnC)Intel Concurrent Collections (CnC)
● Intel Array BuildingBlocks (ArBB)Intel Array BuildingBlocks (ArBB)
● Data Parallel Haskell (DPH)Data Parallel Haskell (DPH)
● ZPLZPL

But—all require But—all require programmer skillprogrammer skill, , extra effort extra effort andand shoehorning of design. shoehorning of design.

How to shoot yourself in the footHow to shoot yourself in the foot

Classic 1991 – http://bit.ly/hiwaG1 Classic 1991 – http://bit.ly/hiwaG1

FORTRAN FORTRAN : You shoot yourself in each toe, iteratively, until you run out of toes, then you : You shoot yourself in each toe, iteratively, until you run out of toes, then you
read in the next foot and repeat.read in the next foot and repeat.

COBOLCOBOL : USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place : USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place
ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to
HOLSTER. CHECK whether shoelace needs to be retied.HOLSTER. CHECK whether shoelace needs to be retied.

LispLisp : You shoot yourself in the appendage which holds the gun with which you shoot : You shoot yourself in the appendage which holds the gun with which you shoot
yourself in the appendage which holds the gun with which you shoot yourself in the yourself in the appendage which holds the gun with which you shoot yourself in the
appendage which holds...appendage which holds...

BASICBASIC : You shoot yourself in the foot with a water pistol. : You shoot yourself in the foot with a water pistol.

ForthForth : Foot yourself in the shoot. : Foot yourself in the shoot.

C++C++ : You accidently create a dozen instances of yourself and shoot them all in the foot. : You accidently create a dozen instances of yourself and shoot them all in the foot.
Providing emergency medical assistance is impossible since you can't tell which are bitwise Providing emergency medical assistance is impossible since you can't tell which are bitwise
copies and which are just pointing at others and saying "That's me, over there."copies and which are just pointing at others and saying "That's me, over there."

CC : You shoot yourself in the foot. : You shoot yourself in the foot.

My addition: My addition: Explicit parallelization in any languageExplicit parallelization in any language : You shoot in the yourself : You shoot in the yourself <segfault><segfault>

The state of Moore's Law, 2010The state of Moore's Law, 2010

""Finding:Finding: There is no known alternative There is no known alternative
for sustaining growth in computing performance;for sustaining growth in computing performance;
however, no compelling programming paradigmshowever, no compelling programming paradigms
for general parallel systems have yet emerged."for general parallel systems have yet emerged."

——The Future of Computing Performance: Game Over or Next Level?The Future of Computing Performance: Game Over or Next Level?

Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,
National Research Council, The National Academies Press, National Research Council, The National Academies Press, 20102010, p.81, p.81

=> The Multicore Dilemma=> The Multicore Dilemma

The root of the problemThe root of the problem

● Purely Purely functional programming languages can functional programming languages can
be safely implicitly parallelizedbe safely implicitly parallelized
● No side-effects, no stateNo side-effects, no state
● => threads cannot interact=> threads cannot interact
● e.g. several parallel versions of Haskelle.g. several parallel versions of Haskell

The root of the problemThe root of the problem

butbut

purely functional programming languagespurely functional programming languages
are extremely hard for mere mortalsare extremely hard for mere mortals
to use to solve real-world problems.to use to solve real-world problems.

On the other hand,On the other hand,

getting explicit parallelization getting explicit parallelization rightright – –
and writing multithreaded code quickly –and writing multithreaded code quickly –

may actually be may actually be harder.harder.

Mere mortalsMere mortals

""Recommendation:Recommendation: Invest in research and Invest in research and
development of programming methods that development of programming methods that
will enable efficient use of parallel systems will enable efficient use of parallel systems

not only by parallel systems expertsnot only by parallel systems experts
but also by typical programmers.but also by typical programmers.""

——The Future of Computing Performance: Game Over or Next Level?The Future of Computing Performance: Game Over or Next Level?

Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,
National Research Council, The National Academies Press, National Research Council, The National Academies Press, 20102010, p.99, p.99

The root of the problemThe root of the problem

● We like We like imperative programming languagesimperative programming languages::
“do this, then this”.“do this, then this”.

● But forBut for imperative programming languages imperative programming languages, it is, it is
impossible to tell the exact impossible to tell the exact data dependency graphdata dependency graph
of a program by static analysis (by looking at the source).of a program by static analysis (by looking at the source).

● (The data dependency graph tells you the order you(The data dependency graph tells you the order you
need to compute values.)need to compute values.)

● Therefore you don't know what can be computed in parallel without:Therefore you don't know what can be computed in parallel without:

– (1) trusting the programmer (explicit parallelism) – VERY BAD(1) trusting the programmer (explicit parallelism) – VERY BAD

– (2) guessing (static code analysis) – possibly/probably very bad(2) guessing (static code analysis) – possibly/probably very bad

– (3) trying and failing/bailing if you were wrong (STM)(3) trying and failing/bailing if you were wrong (STM)

Functional vs. imperativeFunctional vs. imperative

● Functional:Functional:
● gather, pull, reducegather, pull, reduce

● Imperative:Imperative: same as functional, but adds same as functional, but adds
● scatter, push, producescatter, push, produce

Training wheelsTraining wheels

● How to How to minimallyminimally constrain constrain
imperative programming toimperative programming to
allow for automatic implicitallow for automatic implicit
parallelization withparallelization with
guaranteed thread safety...guaranteed thread safety...

……withoutwithout forcing the programmer to use forcing the programmer to use
training wheels?training wheels?

The real root of the problemThe real root of the problem

● ...is ...is the ability to read the the ability to read the current value of a variablecurrent value of a variable.. (Surprising. (Surprising.
Foundational.)Foundational.)

● => Einstein's theory of the relativity of simultaneity:=> Einstein's theory of the relativity of simultaneity:
there is no such thing as “now” given physicalthere is no such thing as “now” given physical
separation.separation.

● c.f. Values vs. variables.c.f. Values vs. variables.

● Remove the concept of “now”, and you Remove the concept of “now”, and you minimally restrictminimally restrict a language a language
such that it's impossible to create race conditions or deadlocks.such that it's impossible to create race conditions or deadlocks.

● But you also don't have to program in purely functional style:But you also don't have to program in purely functional style:
Can support a Can support a subset subset of imperative, push-style programming.of imperative, push-style programming.

Introducing FlowIntroducing Flow

● FlowFlow is a new programming is a new programming
paradigm that enforces this paradigm that enforces this
restriction to solve the restriction to solve the
multicore dilemma while multicore dilemma while
providing strong and specific providing strong and specific
guarantees about program guarantees about program
correctness and runtime safety.correctness and runtime safety.

Introducing FlowIntroducing Flow

● Flow is a compiler framework Flow is a compiler framework
that can be targeted by a wide that can be targeted by a wide
range of different languagesrange of different languages
● [will probably plug into LLVM][will probably plug into LLVM]

● ...and (eventually), a reference ...and (eventually), a reference
languagelanguage

● It doesn't actually exist yet, come It doesn't actually exist yet, come
help make it existhelp make it exist
● http://flowlang.net/http://flowlang.net/

Goals of FlowGoals of Flow

● Solve the multicore dilemmaSolve the multicore dilemma

● Ubiquitous implicit parallelization, zero programmer effortUbiquitous implicit parallelization, zero programmer effort
● ““Write once, parallelize anywhere”Write once, parallelize anywhere”

– Cluster : hadoop / MapReduce, MPI or similarCluster : hadoop / MapReduce, MPI or similar

– JVM via Java ThreadsJVM via Java Threads

– C via pthreadsC via pthreads

– CPU ↔ GPU via CUDACPU ↔ GPU via CUDA
● Optimal load balancing via big-Oh analysis of computation and Optimal load balancing via big-Oh analysis of computation and

communication costcommunication cost

● Prevent programmers from shooting themselves in the footPrevent programmers from shooting themselves in the foot

● Make race conditions, deadlocks, segfaults/NPEs, memory leaks Make race conditions, deadlocks, segfaults/NPEs, memory leaks
impossibleimpossible

Back to the drawing boardBack to the drawing board

Flow enables implicit parallelization byFlow enables implicit parallelization by

syntactically enforcingsyntactically enforcing
every program to beevery program to be

a lattice or partial orderinga lattice or partial ordering,,

such thatsuch that

the program source code itself the program source code itself isis
the data dependency graph.the data dependency graph.

This This makes parallelization trivial.makes parallelization trivial.

Back to the drawing boardBack to the drawing board

Also note that this does not eliminate “push” Also note that this does not eliminate “push”
programmingprogramming

● G can be an unordered collectionG can be an unordered collection

It also does not mean you can't “change the value It also does not mean you can't “change the value
of a variable”of a variable”

● But you have to specify a specific timestamp, But you have to specify a specific timestamp,
e.g.e.g.

x@(t) = x@(t-1) + 1x@(t) = x@(t-1) + 1
(then each value of x is a specific node in the (then each value of x is a specific node in the
DAG)DAG)

=> Minimally-restricted imperative programming => Minimally-restricted imperative programming
with maximum implicit parallelizationwith maximum implicit parallelization

An exampleAn example

● Histogram generationHistogram generation

● Multithreaded version? Two options:Multithreaded version? Two options:
(1) locks (=> contention!)(1) locks (=> contention!)
(2) keep separate copies in TLS; combine at end of operation(2) keep separate copies in TLS; combine at end of operation

● Both options are manualBoth options are manual
=> not easily composable, load-balanceable or scalable=> not easily composable, load-balanceable or scalable

An exampleAn example

● More complex exampleMore complex example

● strsOfLen[strsOfLen[j j] can be an] can be an unordered collectionunordered collection (Set), does not affect result (Set), does not affect result

● Allows writes to be interleaved or reordered => auto TLS splitAllows writes to be interleaved or reordered => auto TLS split

An exampleAn example

● More complex exampleMore complex example

● The less we constrain subproblems, the more parallelizable the codeThe less we constrain subproblems, the more parallelizable the code

● To relax constraints, must understand properties of functions / collectionsTo relax constraints, must understand properties of functions / collections

An exampleAn example

● More complex exampleMore complex example

● Turns out any function can be split into Map and Reduce stagesTurns out any function can be split into Map and Reduce stages

● But MapReduce doesn't incl flow control, + MR can't be auto-generated yetBut MapReduce doesn't incl flow control, + MR can't be auto-generated yet

Map

Reduce

Back to the drawing boardBack to the drawing board

Flow syntactically enforces that a Flow syntactically enforces that a
program's structure be a partial program's structure be a partial
ordering or DAG (specifically a ordering or DAG (specifically a
latticelattice).).

Each node is the result of a Each node is the result of a
function application of some sortfunction application of some sort

=> the process of computing each => the process of computing each
node can be thought of as a node can be thought of as a
MapReduce operationMapReduce operation

Back to the drawing boardBack to the drawing board

Because Flow enforces program structure to be Because Flow enforces program structure to be
a partial ordering, some amazing properties a partial ordering, some amazing properties
emerge:emerge:

(1) Precise memory allocation:(1) Precise memory allocation:

● E only allocated (or computed) after both A E only allocated (or computed) after both A
and B have been computedand B have been computed

● E freed as soon as F and G are computedE freed as soon as F and G are computed

NoNo malloc/free, but malloc/free, but nno GC either!o GC either!

● [Google will not use Java for core [Google will not use Java for core
infrastructure because of GC]infrastructure because of GC]

NoNo wasted memory wasted memory

Back to the drawing boardBack to the drawing board

(2) Precise execution order; direct knowledge of (2) Precise execution order; direct knowledge of
parallelizability.parallelizability.

● The program structure The program structure isis the data dependency the data dependency
graph, which directly constrains the execution graph, which directly constrains the execution
order, so there are no order, so there are no race conditionsrace conditions

(3) There are no cycles in a DAG by definition, (3) There are no cycles in a DAG by definition,
so so deadlocksdeadlocks are impossible too. are impossible too.

(4) You can write the statements in your program (4) You can write the statements in your program
in any orderin any order within each scope, and it will still run within each scope, and it will still run
identically – you no longer need to do a identically – you no longer need to do a
topological sorttopological sort in your head to artificially in your head to artificially
serialize your code (ABDEFCGH)serialize your code (ABDEFCGH)

Back to the drawing boardBack to the drawing board

(5) Next-gen source-code editor: (5) Next-gen source-code editor:
forget text editors, edit the program forget text editors, edit the program
directly as a DAG!directly as a DAG!
● Why do a topo sort on the source Why do a topo sort on the source

at all? It's completely artificial.at all? It's completely artificial.
● Tap into the shape recognition Tap into the shape recognition

power of the human visual power of the human visual
systemsystem

Back to the drawing boardBack to the drawing board

(6) Next-gen debugging(6) Next-gen debugging

● Watch nodes light up on the DAG as Watch nodes light up on the DAG as
they are computedthey are computed

● Watch data literally flowing through Watch data literally flowing through
the pipeline.the pipeline.

● Easy to add checkpointing for Easy to add checkpointing for
stop/restart because you know all stop/restart because you know all
data depsdata deps

● Stopped at a breakpoint => Stopped at a breakpoint => run run
backwardsbackwards one step and re- one step and re-
compute values at a previous nodecompute values at a previous node

● Holy grail of debuggingHoly grail of debugging

Back to the drawing boardBack to the drawing board

(7) (7) There is no execution stack in There is no execution stack in
Flow!Flow!
● Weird and rare among Weird and rare among

programming languages,programming languages,
Prolog is a notable exceptionProlog is a notable exception

● Stack is conceptually replaced by Stack is conceptually replaced by
conditional recursive expansion of conditional recursive expansion of
sub-lattices within a latticesub-lattices within a lattice

● (Compiler will of course generate (Compiler will of course generate
code that uses CPU stack)code that uses CPU stack)

Back to the drawing boardBack to the drawing board

(8) (8) Because each node is effectively a Because each node is effectively a
collection (Map/Set/List), we can calculate the collection (Map/Set/List), we can calculate the
big-Oh size of each collection, i.e. the big-Oh big-Oh size of each collection, i.e. the big-Oh
time required to compute ittime required to compute it

● Every operation can now provide multiple Every operation can now provide multiple
equivalent algorithms or different equivalent algorithms or different
parallelization strategies with different parallelization strategies with different
scaling characteristics, and Flow will switch scaling characteristics, and Flow will switch
between them at compiletime or runtime between them at compiletime or runtime
depending on input sizesdepending on input sizes

● e.g. switch to single-threaded code for e.g. switch to single-threaded code for
small inputssmall inputs

● Find CPU bottlenecks and memory hogs Find CPU bottlenecks and memory hogs
before you even run your code (compile-before you even run your code (compile-
time profiling!)time profiling!)

Category TheoryCategory Theory

● Further optimize implicit parallelization by Further optimize implicit parallelization by
data reordering and groupingdata reordering and grouping
● Uses Uses category theorycategory theory for for inference over inference over

function properties: associativity, function properties: associativity,
commutativity, idempotence, …commutativity, idempotence, …

● Each property offers a degree of freedom to Each property offers a degree of freedom to
parallelize more efficientlyparallelize more efficiently

● e.g. successive applications of functions that e.g. successive applications of functions that
are associative and commutative can be are associative and commutative can be
reordered/grouped at will:reordered/grouped at will:
(1+(3+(9+(2+(4+7))))) = (1+3+9)+(2+4+7)(1+(3+(9+(2+(4+7))))) = (1+3+9)+(2+4+7)
 serial → parallel serial → parallel

Iteration and Turing-completenessIteration and Turing-completeness

● The Structured Program Theorem: The Structured Program Theorem: every every
computable function can be implemented by computable function can be implemented by
combining subprograms in only three ways:combining subprograms in only three ways:

(1) (1) Executing one subprogram, and then Executing one subprogram, and then
another subprogram (sequence)another subprogram (sequence)
– Composition of lattices in FlowComposition of lattices in Flow

(2) Executing one of two subprograms (2) Executing one of two subprograms
according to the value of a boolean variable according to the value of a boolean variable
(selection)(selection)
– Trivial boolean function application in FlowTrivial boolean function application in Flow

Iteration and Turing-completenessIteration and Turing-completeness

(3) Executing a subprogram until a boolean (3) Executing a subprogram until a boolean
variable is true (repetition)variable is true (repetition)

ConclusionConclusion

● Flow imposes only the minimally invasive constraint on an Flow imposes only the minimally invasive constraint on an
imperative programming language to allow implicit imperative programming language to allow implicit
parallelization with zero programmer effortparallelization with zero programmer effort

● ManyMany different language syntaxes could be built on top of different language syntaxes could be built on top of
this paradigm (sharing the compiler backend)this paradigm (sharing the compiler backend)

● Mere mortal programmers can continue to work (mostly) as Mere mortal programmers can continue to work (mostly) as
normal, the compiler will figure out the hard stuffnormal, the compiler will figure out the hard stuff

● This (in theory) solves the multicore dilemma –This (in theory) solves the multicore dilemma –
it was a human issue to start with.it was a human issue to start with.

flowlang.netflowlang.net

twitter.com/LHtwitter.com/LH

““Write Once,Write Once,
Parallelize Anywhere”Parallelize Anywhere”

The Flow Programming Language:The Flow Programming Language:
An implicitly-parallelizing, programmer-safe languageAn implicitly-parallelizing, programmer-safe language

Luke Hutchison

Moore's LawMoore's Law

● The number of transistors that can be placed The number of transistors that can be placed
inexpensively on an integrated circuit has inexpensively on an integrated circuit has
doubled approximately every two years.doubled approximately every two years.

Moore's LawMoore's Law

● Computing is work; transistors do work; more transistors Computing is work; transistors do work; more transistors
working in parallel should yield faster computersworking in parallel should yield faster computers

● => => Moore's Law has (so far) also applied to Moore's Law has (so far) also applied to CPU speedCPU speed

● BUT now we're hitting multiple walls:BUT now we're hitting multiple walls:

● Transistor sizeTransistor size

– tunneling; lithography feature size vs. wavelengthtunneling; lithography feature size vs. wavelength
– no more 2D density increasesno more 2D density increases

● Thermal envelopeThermal envelope

– function of frequency and feature size =>function of frequency and feature size =>
we have hit a clockspeed wallwe have hit a clockspeed wall

● Data widthData width

– 128-bit CPUs? Need parallel control flow instead128-bit CPUs? Need parallel control flow instead

But it's worse than thatBut it's worse than that

It's not just the end of Moore's Law...It's not just the end of Moore's Law...

...it's the beginning of an era of ...it's the beginning of an era of buggier software.buggier software.

Humans will Humans will nevernever be good at be good at
writing multi-threaded code –writing multi-threaded code –

our brains simply don't work like that.our brains simply don't work like that.

(Abstractions like Futures only help a little bit.)(Abstractions like Futures only help a little bit.)

Parallel Programming ToolsetParallel Programming Toolset

● Traditional locks: mutex, semaphore etc.Traditional locks: mutex, semaphore etc.

● Libraries: java.lang.concurrentLibraries: java.lang.concurrent

● Message passing: MPI; Actor model (Erlang)Message passing: MPI; Actor model (Erlang)

● Futures, channels, STMFutures, channels, STM

● MapReduceMapReduce

● Array programmingArray programming

● Java7 ParallelArrayJava7 ParallelArray
● Intel Concurrent Collections (CnC)Intel Concurrent Collections (CnC)
● Intel Array BuildingBlocks (ArBB)Intel Array BuildingBlocks (ArBB)
● Data Parallel Haskell (DPH)Data Parallel Haskell (DPH)
● ZPLZPL

But—all require But—all require programmer skillprogrammer skill, , extra effort extra effort andand shoehorning of design. shoehorning of design.

How to shoot yourself in the footHow to shoot yourself in the foot

Classic 1991 – http://bit.ly/hiwaG1 Classic 1991 – http://bit.ly/hiwaG1

FORTRAN FORTRAN : You shoot yourself in each toe, iteratively, until you run out of toes, then you : You shoot yourself in each toe, iteratively, until you run out of toes, then you
read in the next foot and repeat.read in the next foot and repeat.

COBOLCOBOL : USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place : USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place
ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to
HOLSTER. CHECK whether shoelace needs to be retied.HOLSTER. CHECK whether shoelace needs to be retied.

LispLisp : You shoot yourself in the appendage which holds the gun with which you shoot : You shoot yourself in the appendage which holds the gun with which you shoot
yourself in the appendage which holds the gun with which you shoot yourself in the yourself in the appendage which holds the gun with which you shoot yourself in the
appendage which holds...appendage which holds...

BASICBASIC : You shoot yourself in the foot with a water pistol. : You shoot yourself in the foot with a water pistol.

ForthForth : Foot yourself in the shoot. : Foot yourself in the shoot.

C++C++ : You accidently create a dozen instances of yourself and shoot them all in the foot. : You accidently create a dozen instances of yourself and shoot them all in the foot.
Providing emergency medical assistance is impossible since you can't tell which are bitwise Providing emergency medical assistance is impossible since you can't tell which are bitwise
copies and which are just pointing at others and saying "That's me, over there."copies and which are just pointing at others and saying "That's me, over there."

CC : You shoot yourself in the foot. : You shoot yourself in the foot.

My addition: My addition: Explicit parallelization in any languageExplicit parallelization in any language : You shoot in the yourself : You shoot in the yourself <segfault><segfault>

The state of Moore's Law, 2010The state of Moore's Law, 2010

""Finding:Finding: There is no known alternative There is no known alternative
for sustaining growth in computing performance;for sustaining growth in computing performance;
however, no compelling programming paradigmshowever, no compelling programming paradigms
for general parallel systems have yet emerged."for general parallel systems have yet emerged."

——The Future of Computing Performance: Game Over or Next Level?The Future of Computing Performance: Game Over or Next Level?

Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,
National Research Council, The National Academies Press, National Research Council, The National Academies Press, 20102010, p.81, p.81

=> The Multicore Dilemma=> The Multicore Dilemma

The root of the problemThe root of the problem

● Purely Purely functional programming languages can functional programming languages can
be safely implicitly parallelizedbe safely implicitly parallelized
● No side-effects, no stateNo side-effects, no state
● => threads cannot interact=> threads cannot interact
● e.g. several parallel versions of Haskelle.g. several parallel versions of Haskell

The root of the problemThe root of the problem

butbut

purely functional programming languagespurely functional programming languages
are extremely hard for mere mortalsare extremely hard for mere mortals
to use to solve real-world problems.to use to solve real-world problems.

On the other hand,On the other hand,

getting explicit parallelization getting explicit parallelization rightright – –
and writing multithreaded code quickly –and writing multithreaded code quickly –

may actually be may actually be harder.harder.

Mere mortalsMere mortals

""Recommendation:Recommendation: Invest in research and Invest in research and
development of programming methods that development of programming methods that
will enable efficient use of parallel systems will enable efficient use of parallel systems

not only by parallel systems expertsnot only by parallel systems experts
but also by typical programmers.but also by typical programmers.""

——The Future of Computing Performance: Game Over or Next Level?The Future of Computing Performance: Game Over or Next Level?

Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,Fuller & Millett (Eds.); Committee on Sustaining Growth in Computing Performance,
National Research Council, The National Academies Press, National Research Council, The National Academies Press, 20102010, p.99, p.99

The root of the problemThe root of the problem

● We like We like imperative programming languagesimperative programming languages::
“do this, then this”.“do this, then this”.

● But forBut for imperative programming languages imperative programming languages, it is, it is
impossible to tell the exact impossible to tell the exact data dependency graphdata dependency graph
of a program by static analysis (by looking at the source).of a program by static analysis (by looking at the source).

● (The data dependency graph tells you the order you(The data dependency graph tells you the order you
need to compute values.)need to compute values.)

● Therefore you don't know what can be computed in parallel without:Therefore you don't know what can be computed in parallel without:

– (1) trusting the programmer (explicit parallelism) – VERY BAD(1) trusting the programmer (explicit parallelism) – VERY BAD

– (2) guessing (static code analysis) – possibly/probably very bad(2) guessing (static code analysis) – possibly/probably very bad

– (3) trying and failing/bailing if you were wrong (STM)(3) trying and failing/bailing if you were wrong (STM)

Functional vs. imperativeFunctional vs. imperative

● Functional:Functional:
● gather, pull, reducegather, pull, reduce

● Imperative:Imperative: same as functional, but adds same as functional, but adds
● scatter, push, producescatter, push, produce

Training wheelsTraining wheels

● How to How to minimallyminimally constrain constrain
imperative programming toimperative programming to
allow for automatic implicitallow for automatic implicit
parallelization withparallelization with
guaranteed thread safety...guaranteed thread safety...

……withoutwithout forcing the programmer to use forcing the programmer to use
training wheels?training wheels?

The real root of the problemThe real root of the problem

● ...is ...is the ability to read the the ability to read the current value of a variablecurrent value of a variable.. (Surprising. (Surprising.
Foundational.)Foundational.)

● => Einstein's theory of the relativity of simultaneity:=> Einstein's theory of the relativity of simultaneity:
there is no such thing as “now” given physicalthere is no such thing as “now” given physical
separation.separation.

● c.f. Values vs. variables.c.f. Values vs. variables.

● Remove the concept of “now”, and you Remove the concept of “now”, and you minimally restrictminimally restrict a language a language
such that it's impossible to create race conditions or deadlocks.such that it's impossible to create race conditions or deadlocks.

● But you also don't have to program in purely functional style:But you also don't have to program in purely functional style:
Can support a Can support a subset subset of imperative, push-style programming.of imperative, push-style programming.

Introducing FlowIntroducing Flow

● FlowFlow is a new programming is a new programming
paradigm that enforces this paradigm that enforces this
restriction to solve the restriction to solve the
multicore dilemma while multicore dilemma while
providing strong and specific providing strong and specific
guarantees about program guarantees about program
correctness and runtime safety.correctness and runtime safety.

Introducing FlowIntroducing Flow

● Flow is a compiler framework Flow is a compiler framework
that can be targeted by a wide that can be targeted by a wide
range of different languagesrange of different languages
● [will probably plug into LLVM][will probably plug into LLVM]

● ...and (eventually), a reference ...and (eventually), a reference
languagelanguage

● It doesn't actually exist yet, come It doesn't actually exist yet, come
help make it existhelp make it exist
● http://flowlang.net/http://flowlang.net/

Goals of FlowGoals of Flow

● Solve the multicore dilemmaSolve the multicore dilemma

● Ubiquitous implicit parallelization, zero programmer effortUbiquitous implicit parallelization, zero programmer effort
● ““Write once, parallelize anywhere”Write once, parallelize anywhere”

– Cluster : hadoop / MapReduce, MPI or similarCluster : hadoop / MapReduce, MPI or similar

– JVM via Java ThreadsJVM via Java Threads

– C via pthreadsC via pthreads

– CPU ↔ GPU via CUDACPU ↔ GPU via CUDA
● Optimal load balancing via big-Oh analysis of computation and Optimal load balancing via big-Oh analysis of computation and

communication costcommunication cost

● Prevent programmers from shooting themselves in the footPrevent programmers from shooting themselves in the foot

● Make race conditions, deadlocks, segfaults/NPEs, memory leaks Make race conditions, deadlocks, segfaults/NPEs, memory leaks
impossibleimpossible

Back to the drawing boardBack to the drawing board

Flow enables implicit parallelization byFlow enables implicit parallelization by

syntactically enforcingsyntactically enforcing
every program to beevery program to be

a lattice or partial orderinga lattice or partial ordering,,

such thatsuch that

the program source code itself the program source code itself isis
the data dependency graph.the data dependency graph.

This This makes parallelization trivial.makes parallelization trivial.

Back to the drawing boardBack to the drawing board

Also note that this does not eliminate “push” Also note that this does not eliminate “push”
programmingprogramming

● G can be an unordered collectionG can be an unordered collection

It also does not mean you can't “change the value It also does not mean you can't “change the value
of a variable”of a variable”

● But you have to specify a specific timestamp, But you have to specify a specific timestamp,
e.g.e.g.

x@(t) = x@(t-1) + 1x@(t) = x@(t-1) + 1
(then each value of x is a specific node in the (then each value of x is a specific node in the
DAG)DAG)

=> Minimally-restricted imperative programming => Minimally-restricted imperative programming
with maximum implicit parallelizationwith maximum implicit parallelization

An exampleAn example

● Histogram generationHistogram generation

● Multithreaded version? Two options:Multithreaded version? Two options:
(1) locks (=> contention!)(1) locks (=> contention!)
(2) keep separate copies in TLS; combine at end of operation(2) keep separate copies in TLS; combine at end of operation

● Both options are manualBoth options are manual
=> not easily composable, load-balanceable or scalable=> not easily composable, load-balanceable or scalable

An exampleAn example

● More complex exampleMore complex example

● strsOfLen[strsOfLen[j j] can be an] can be an unordered collectionunordered collection (Set), does not affect result (Set), does not affect result

● Allows writes to be interleaved or reordered => auto TLS splitAllows writes to be interleaved or reordered => auto TLS split

An exampleAn example

● More complex exampleMore complex example

● The less we constrain subproblems, the more parallelizable the codeThe less we constrain subproblems, the more parallelizable the code

● To relax constraints, must understand properties of functions / collectionsTo relax constraints, must understand properties of functions / collections

An exampleAn example

● More complex exampleMore complex example

● Turns out any function can be split into Map and Reduce stagesTurns out any function can be split into Map and Reduce stages

● But MapReduce doesn't incl flow control, + MR can't be auto-generated yetBut MapReduce doesn't incl flow control, + MR can't be auto-generated yet

Map

Reduce

Back to the drawing boardBack to the drawing board

Flow syntactically enforces that a Flow syntactically enforces that a
program's structure be a partial program's structure be a partial
ordering or DAG (specifically a ordering or DAG (specifically a
latticelattice).).

Each node is the result of a Each node is the result of a
function application of some sortfunction application of some sort

=> the process of computing each => the process of computing each
node can be thought of as a node can be thought of as a
MapReduce operationMapReduce operation

Back to the drawing boardBack to the drawing board

Because Flow enforces program structure to be Because Flow enforces program structure to be
a partial ordering, some amazing properties a partial ordering, some amazing properties
emerge:emerge:

(1) Precise memory allocation:(1) Precise memory allocation:

● E only allocated (or computed) after both A E only allocated (or computed) after both A
and B have been computedand B have been computed

● E freed as soon as F and G are computedE freed as soon as F and G are computed

NoNo malloc/free, but malloc/free, but nno GC either!o GC either!

● [Google will not use Java for core [Google will not use Java for core
infrastructure because of GC]infrastructure because of GC]

NoNo wasted memory wasted memory

Back to the drawing boardBack to the drawing board

(2) Precise execution order; direct knowledge of (2) Precise execution order; direct knowledge of
parallelizability.parallelizability.

● The program structure The program structure isis the data dependency the data dependency
graph, which directly constrains the execution graph, which directly constrains the execution
order, so there are no order, so there are no race conditionsrace conditions

(3) There are no cycles in a DAG by definition, (3) There are no cycles in a DAG by definition,
so so deadlocksdeadlocks are impossible too. are impossible too.

(4) You can write the statements in your program (4) You can write the statements in your program
in any orderin any order within each scope, and it will still run within each scope, and it will still run
identically – you no longer need to do a identically – you no longer need to do a
topological sorttopological sort in your head to artificially in your head to artificially
serialize your code (ABDEFCGH)serialize your code (ABDEFCGH)

Back to the drawing boardBack to the drawing board

(5) Next-gen source-code editor: (5) Next-gen source-code editor:
forget text editors, edit the program forget text editors, edit the program
directly as a DAG!directly as a DAG!
● Why do a topo sort on the source Why do a topo sort on the source

at all? It's completely artificial.at all? It's completely artificial.
● Tap into the shape recognition Tap into the shape recognition

power of the human visual power of the human visual
systemsystem

Back to the drawing boardBack to the drawing board

(6) Next-gen debugging(6) Next-gen debugging

● Watch nodes light up on the DAG as Watch nodes light up on the DAG as
they are computedthey are computed

● Watch data literally flowing through Watch data literally flowing through
the pipeline.the pipeline.

● Easy to add checkpointing for Easy to add checkpointing for
stop/restart because you know all stop/restart because you know all
data depsdata deps

● Stopped at a breakpoint => Stopped at a breakpoint => run run
backwardsbackwards one step and re- one step and re-
compute values at a previous nodecompute values at a previous node

● Holy grail of debuggingHoly grail of debugging

Back to the drawing boardBack to the drawing board

(7) (7) There is no execution stack in There is no execution stack in
Flow!Flow!

● Weird and rare among Weird and rare among
programming languages,programming languages,
Prolog is a notable exceptionProlog is a notable exception

● Stack is conceptually replaced by Stack is conceptually replaced by
conditional recursive expansion of conditional recursive expansion of
sub-lattices within a latticesub-lattices within a lattice

● (Compiler will of course generate (Compiler will of course generate
code that uses CPU stack)code that uses CPU stack)

Back to the drawing boardBack to the drawing board

(8) (8) Because each node is effectively a Because each node is effectively a
collection (Map/Set/List), we can calculate the collection (Map/Set/List), we can calculate the
big-Oh size of each collection, i.e. the big-Oh big-Oh size of each collection, i.e. the big-Oh
time required to compute ittime required to compute it

● Every operation can now provide multiple Every operation can now provide multiple
equivalent algorithms or different equivalent algorithms or different
parallelization strategies with different parallelization strategies with different
scaling characteristics, and Flow will switch scaling characteristics, and Flow will switch
between them at compiletime or runtime between them at compiletime or runtime
depending on input sizesdepending on input sizes

● e.g. switch to single-threaded code for e.g. switch to single-threaded code for
small inputssmall inputs

● Find CPU bottlenecks and memory hogs Find CPU bottlenecks and memory hogs
before you even run your code (compile-before you even run your code (compile-
time profiling!)time profiling!)

Category TheoryCategory Theory

● Further optimize implicit parallelization by Further optimize implicit parallelization by
data reordering and groupingdata reordering and grouping
● Uses Uses category theorycategory theory for for inference over inference over

function properties: associativity, function properties: associativity,
commutativity, idempotence, …commutativity, idempotence, …

● Each property offers a degree of freedom to Each property offers a degree of freedom to
parallelize more efficientlyparallelize more efficiently

● e.g. successive applications of functions that e.g. successive applications of functions that
are associative and commutative can be are associative and commutative can be
reordered/grouped at will:reordered/grouped at will:
(1+(3+(9+(2+(4+7))))) = (1+3+9)+(2+4+7)(1+(3+(9+(2+(4+7))))) = (1+3+9)+(2+4+7)
 serial → parallel serial → parallel

Iteration and Turing-completenessIteration and Turing-completeness

● The Structured Program Theorem: The Structured Program Theorem: every every
computable function can be implemented by computable function can be implemented by
combining subprograms in only three ways:combining subprograms in only three ways:

(1) (1) Executing one subprogram, and then Executing one subprogram, and then
another subprogram (sequence)another subprogram (sequence)
– Composition of lattices in FlowComposition of lattices in Flow

(2) Executing one of two subprograms (2) Executing one of two subprograms
according to the value of a boolean variable according to the value of a boolean variable
(selection)(selection)
– Trivial boolean function application in FlowTrivial boolean function application in Flow

Iteration and Turing-completenessIteration and Turing-completeness

(3) Executing a subprogram until a boolean (3) Executing a subprogram until a boolean
variable is true (repetition)variable is true (repetition)

ConclusionConclusion

● Flow imposes only the minimally invasive constraint on an Flow imposes only the minimally invasive constraint on an
imperative programming language to allow implicit imperative programming language to allow implicit
parallelization with zero programmer effortparallelization with zero programmer effort

● ManyMany different language syntaxes could be built on top of different language syntaxes could be built on top of
this paradigm (sharing the compiler backend)this paradigm (sharing the compiler backend)

● Mere mortal programmers can continue to work (mostly) as Mere mortal programmers can continue to work (mostly) as
normal, the compiler will figure out the hard stuffnormal, the compiler will figure out the hard stuff

● This (in theory) solves the multicore dilemma –This (in theory) solves the multicore dilemma –
it was a human issue to start with.it was a human issue to start with.

flowlang.netflowlang.net

twitter.com/LHtwitter.com/LH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

